摘要:
A semiconductor light emitting device includes a first conductive semiconductor layer including a V-shaped recess in a cross-sectional view. An active layer is disposed on the first conductive semiconductor layer, conforming to the shape of the V-shaped recess. An intermediate layer is disposed on the active layer and is doped with a first impurity. A second conductive semiconductor layer is disposed on the intermediate layer. The intermediate layer includes a first intermediate layer and a second intermediate layer. The first intermediate layer is disposed on the active layer, conforming to the shape of the V-shape recess. The second intermediate layer is disposed on the first intermediate layer and includes a protrusion to fill the V-shaped recess.
摘要:
A method of fabricating a semiconductor light-emitting device is provided that includes forming a first conductivity-type semiconductor layer, forming an active layer by alternately forming a plurality of quantum well layers grown at a first temperature and a plurality of quantum barrier layers grown at a second temperature higher than the first temperature, and forming a second conductivity-type semiconductor layer.
摘要:
A method of manufacturing a nitride semiconductor light emitting device which includes forming an n-type semiconductor layer, forming an active layer on the n-type semiconductor layer, forming a superlattice layer by alternately stacking at least two nitride layers made of InxAlyGa(1-x-y)N (0≦x≦1, 0≦y≦1, and 0≦x+y≦1) having different energy bandgaps from each other and doped with a p-type dopant, and forming a p-type semiconductor layer on the superlattice layer. The forming of the superlattice layer is performed by adjusting a flow rate of a p-type dopant source gas to reduce the flow rate in a growth termination period of the superlattice layer by no greater than about half of the flow rate in a growth initiation period of the superlattice layer while being doped with the p-type dopant.
摘要:
A semiconductor light emitting device includes a first conductive semiconductor layer including a V-shaped recess in a cross-sectional view. An active layer is disposed on the first conductive semiconductor layer, conforming to the shape of the V-shaped recess. An intermediate layer is disposed on the active layer and is doped with a first impurity. A second conductive semiconductor layer is disposed on the intermediate layer. The intermediate layer includes a first intermediate layer and a second intermediate layer. The first intermediate layer is disposed on the active layer, conforming to the shape of the V-shape recess. The second intermediate layer is disposed on the first intermediate layer and includes a protrusion to fill the V-shaped recess.
摘要:
A method of manufacturing a nitride semiconductor light emitting device which includes forming an n-type semiconductor layer, forming an active layer on the n-type semiconductor layer, forming a superlattice layer by alternately stacking at least two nitride layers made of InxAlyGa(1-x-y)N (0≦x≦1, 0≦y≦1, and 0≦x+y≦1) having different energy bandgaps from each other and doped with a p-type dopant, and forming a p-type semiconductor layer on the superlattice layer. The forming of the superlattice layer is performed by adjusting a flow rate of a p-type dopant source gas to reduce the flow rate in a growth termination period of the superlattice layer by no greater than about half of the flow rate in a growth initiation period of the superlattice layer while being doped with the p-type dopant.
摘要翻译:一种制造氮化物半导体发光器件的方法,包括:形成n型半导体层,在n型半导体层上形成有源层,通过交替地堆叠由In x Al y Ga(1- xy)N(0≦̸ x≦̸ 1,0和nlE; y≦̸ 1和0≦̸ x + y≦̸ 1)彼此具有不同的能量带隙并掺杂有p型掺杂剂,并且形成p型半导体层 超晶格层。 超晶格层的形成通过调节p型掺杂剂源气体的流量来实现,以在超晶格层的生长终止时段内将流速降低不超过生长开始期间的流速的大约一半 的超晶格层,同时掺杂有p型掺杂剂。