Abstract:
A beam deflector includes a first electrode layer including a plurality of line electrodes extending in a first direction and arranged parallel to each other in a second direction crossing the first direction; a second electrode layer separated from the first electrode layer by a predetermined distance to face the first electrode layer; and a deflection layer between the first electrode layer and the second electrode layer and having a plurality of optically anisotropic molecules controlled by an electric field formed between the first electrode layer and the second electrode layer. Each of the optically anisotropic molecules has an ellipse shape having a major axis and a minor axis, wherein the major axis is arranged to head for the first direction.
Abstract:
A beam deflector includes a first electrode layer including a plurality of line electrodes extending in a first direction and arranged parallel to each other in a second direction crossing the first direction; a second electrode layer separated from the first electrode layer by a predetermined distance to face the first electrode layer; and a deflection layer between the first electrode layer and the second electrode layer and having a plurality of optically anisotropic molecules controlled by an electric field formed between the first electrode layer and the second electrode layer. Each of the optically anisotropic molecules has an ellipse shape having a major axis and a minor axis, wherein the major axis is arranged to head for the first direction.
Abstract:
Provided are a light deflector and a light output device including the light deflector, the light deflector including a first electrode layer and a second electrode layer that are spaced apart from each other and facing each other, and a deflection layer configured to deflect incident light thereon based on a voltage applied to the first electrode layer and the second electrode layer, wherein the first electrode layer includes a plurality of electrode elements that are spaced apart from each other, and a resistor that is in contact with at least part of the plurality of electrode elements and in which a voltage drop is generated.
Abstract:
A beam deflection layer includes: a first selective polarization conversion-splitter that splits first color light in an incident light beam into 1A color light and 1B color light having different polarization directions from each other; a first beam deflector that deflects the 1A first first color light in the light beam from the 1A first selective polarization conversion-splitter, a first selective polarization converter that converts polarization directions of the 1A first first color light and the 1B second first color light in the light beam from the 1A first beam deflector, and a 1B second beam deflector configured to deflect the 1B second first color light in the light beam from the first selective polarization converter. The first color light, the 1A color light, and the 1B color light each have a first wavelength band.
Abstract:
A beam deflector includes a first wavelength selective polarizer configured to convert a polarization state of light in a first wavelength band into a first polarization state, a first liquid crystal deflector including liquid crystal molecules and an optical path change surface to deflect light incident from the first wavelength selective polarizer, and a controller configured to control the first liquid crystal deflector to adjust an angle of the first optical path change surface.
Abstract:
A spatial light modulator including an electrode having a nano-antenna structure, and a display apparatus including the spatial light modulator are provided. The spatial light modulator includes a refractive index changing layer, and a pixel electrode and a common electrode which are configured to apply an electric field to the refractive index changing layer, and at least one of the pixel electrode and the common electrode include a nano-antenna pattern structure configured to resonate light.
Abstract:
Provided is a beam deflector including: a first electrode layer including a plurality of electrode patterns that are arranged in a first direction; a second electrode layer provided to oppose the first electrode layer; a liquid crystal layer provided between the first electrode layer and the second electrode layer in a second direction perpendicular to the first direction, and including a plurality of liquid crystal molecules; an input channel unit including a plurality of input channels; a demultiplexer configured to divide each of the input channels into a preset number of divided channels, and connect the divided channels to the electrode patterns; and a control circuit connected to the demultiplexer, and configured to control an output signal output from the divided channels to the first electrode layer.
Abstract:
A holographic display device includes a light source configured to emit light, the light including first light of a first wavelength, second light of a second wavelength, and third light of a third wavelength; a spatial light modulator configured to form a holographic pattern to modulate the light emitted from the light source and to produce a holographic image; and a focusing optical system configured to focus the holographic image. The focusing optical system includes a fixed-focus optical system having a fixed focal length, and a variable focus optical system having a focal length that is changed by electrical control. The fixed-focus optical system is configured to focus the first light of the first wavelength, the second light of the second wavelength, and the third light of the third wavelength on different positions, respectively, on an optical axis to cancel a chromatic aberration by the variable focus optical system.
Abstract:
A beam deflector includes a first wavelength selective polarizer configured to convert a polarization state of light in a first wavelength band into a first polarization state, a first liquid crystal deflector including liquid crystal molecules and an optical path change surface to deflect light incident from the first wavelength selective polarizer, and a controller configured to control the first liquid crystal deflector to adjust an angle of the first optical path change surface.
Abstract:
A liquid crystal light deflector includes a first electrode layer including line electrodes, a second electrode layer including a common electrode, and a liquid crystal layer that forms an electrical prism using liquid crystal molecules according to an electric field formed between the first and second electrode layers. The orientations of the liquid crystal molecules may be reset by an electric field formed between line electrodes of adjacent channels within the first electrode layer. A method of deflecting light includes controlling the first electrode layer and the second electrode layer to reset the orientation of the liquid crystal molecules prior to forming an electrical prism in the liquid crystal layer.