Abstract:
Several of the films that comprise various energy producing or control devices, for example, electrochromic devices, lithium batteries, and photovoltaic cells, are sensitive to moisture in some way. They may be especially vulnerable to moisture at particular stages during their fabrication. It may also be highly desirable during fabrication to be able to wash particulates from the surface. The particulates may be generated some aspect of the fabrication process, or they may arise from the environment in which the fabrication takes place. This invention shows ways to remove said particles from the surface without incurring the damage associated with typical washing processes, resulting in higher manufacturing yields and better device performance.
Abstract:
Several of the films that comprise various energy producing or control devices, for example, electrochromic devices, lithium batteries, and photovoltaic cells, are sensitive to moisture in some way. They may be especially vulnerable to moisture at particular stages during their fabrication. It may also be highly desirable during fabrication to be able to wash particulates from the surface. The particulates may be generated some aspect of the fabrication process, or they may arise from the environment in which the fabrication takes place. This invention shows ways to remove said particles from the surface without incurring the damage associated with typical washing processes, resulting in higher manufacturing yields and better device performance.
Abstract:
The present invention provides for an electroactive device having a first conductive layer, a second conductive layer, and one or more electroactive layers sandwiched between the first and second conductive layers. One or more adjacent layers of the electroactive device may include a physical separation between a first portion and a second portion of the adjacent layers, the physical separation defining a respective tapered sidewall of each of the first and second portions. The one or more adjacent layers may include one of the first and second conductive layers. The remaining layers of the electroactive device may be formed over the physical separation of the one or more adjacent layers. The remaining layers may include the other of the first and second conductive layers.
Abstract:
The present invention provides for an electroactive device having a first conductive layer, a second conductive layer, and one or more electroactive layers sandwiched between the first and second conductive layers. One or more adjacent layers of the electroactive device may include a physical separation between a first portion and a second portion of the adjacent layers, the physical separation defining a respective tapered sidewall of each of the first and second portions. The one or more adjacent layers may include one of the first and second conductive layers. The remaining layers of the electroactive device may be formed over the physical separation of the one or more adjacent layers. The remaining layers may include the other of the first and second conductive layers.
Abstract:
An apparatus for repair of a defect in an electronic energy control device may include a position indicating means for indicating a position at which to fixedly position a mounting unit relative to a portion of an electronic energy control device including a defect to be repaired, where the device is fixed in position. An imaging and repair assembly of the apparatus has an optical imaging range and a laser repair range. When the mounting unit is mounted to a support surface to fixedly position the mounting unit at the position indicated by the position indicating means and the imaging and repair assembly is attached to the mounting unit, the portion of the electronic energy control device is within the imaging range and the repair range.
Abstract:
The present invention provides for an electroactive device having a first conductive layer, a second conductive layer, and one or more electroactive layers sandwiched between the first and second conductive layers. One or more adjacent layers of the electroactive device may include a physical separation between a first portion and a second portion of the adjacent layers, the physical separation defining a respective tapered sidewall of each of the first and second portions. The one or more adjacent layers may include one of the first and second conductive layers. The remaining layers of the electroactive device may be formed over the physical separation of the one or more adjacent layers. The remaining layers may include the other of the first and second conductive layers.
Abstract:
One object of the present invention is to provide an electrochromic device having improved insulating film structure to reduce electrical leakage. The improved structure includes a lower conductive layer, upper conductive layer, an electrochromic electrode layer, a counter electrode layer, and at least one ion-conductor layer sandwiched between the electrochromic electrode layer and the counter electrode layer. The lower conductive layer and the electrochromic electrode layer are scribed and the gap formed from the scribing is filled with the layers formed above the electrochromic electrode layer. In some aspects, the ion-conductor layer is also scribed with the lower conductor and electrochromic electrode layers and the gap formed from the scribing is filled with the layers formed above the ion-conductor layer. In further aspects, the insulating film may include one or more buffer layers formed above an ion-conductor layer, further separating the upper conductive layer from the lower conductive layer.
Abstract:
An apparatus for repair of a defect in an electronic energy control device may include a position indicating means for indicating a position at which to fixedly position a mounting unit relative to a portion of an electronic energy control device including a defect to be repaired, where the device is fixed in position. An imaging and repair assembly of the apparatus has an optical imaging range and a laser repair range. When the mounting unit is mounted to a support surface to fixedly position the mounting unit at the position indicated by the position indicating means and the imaging and repair assembly is attached to the mounting unit, the portion of the electronic energy control device is within the imaging range and the repair range.
Abstract:
The disclosure is directed to a cutting process involving: (a) creating a starter crack using a scribe wheel, (b) application of laser or electrothermal heating, and (c) subsequent cooling from a gas or an aerosol jet, as the laser beam and cooling jet move along the desired cutting line. The cutting process can be implemented for cutting a glass panel or other substrate into a plurality of smaller panels. The starter crack may be created on any of the smaller panels within about 10 mm to about 20 mm from the corner of the smaller panel.
Abstract:
One object of the present invention is to provide an electrochromic device having improved insulating film structure to reduce electrical leakage. The improved structure includes a lower conductive layer, upper conductive layer, an electrochromic electrode layer, a counter electrode layer, and at least one ion-conductor layer sandwiched between the electrochromic electrode layer and the counter electrode layer. The lower conductive layer and the electrochromic electrode layer are scribed and the gap formed from the scribing is filled with the layers formed above the electrochromic electrode layer. In some aspects, the ion-conductor layer is also scribed with the lower conductor and electrochromic electrode layers and the gap formed from the scribing is filled with the layers formed above the ion-conductor layer. In further aspects, the insulating film may include one or more buffer layers formed above an ion-conductor layer, further separating the upper conductive layer from the lower conductive layer.