Abstract:
An electron beam scanning system employing a relatively short housing chamber wherein an electron beam is produced includes an ion controlling electrode assembly. Located in the housing between the electron gun and system beam optics, the assembly includes a generally cone-shaped rotating field ion controlling electrode (or "RICE") unit comprising cylindrically symmetrical element pairs disposed on opposite sides of the housing Z-axis. Preferably equal and opposite potential sources coupled to elements comprising an element pair create a transverse electric field therebetween. The vector sum of the fields produced by all element pairs is the transverse field created by the RICE unit. The potentials are varied, rotating the overall RICE field to controllably remove most but not all positive ions. The remaining ions improve the electron beam space-charge density, resulting in a sharply focused scanning electron beam. Preferably a disk-like positive ion electrode (or "PIE") unit coupled to a large positive potential is disposed downstream from the RICE unit to block upstream migration of positive ions. Where discontinuities are present in the housing, a periodic axial field ion controlling electrode (or "PICE") unit is disposed at the upstream end of the overall assembly. The PICE comprises spaced-apart disks alternately coupled to large and small potentials to create alternating axial fields within a short axial distance, to rapidly sweep away ions. Regions within the overall assembly not otherwise acted upon by fields are covered with one or more conventional ICE units to sweep away positive ions.
Abstract:
An improved ion clearing electrode assembly for use in an electron beam production and control assembly which is especially suitable for use in a scanning electron beam computed tomography X-ray scanning system. The assembly uses a vacuum sealed housing chamber which is evacuated of internal gases and in which the electron beam is generated and propagated. Normally residual gas within the chamber interacts with the electrons of the beam to produce positive ions which have the affect of neutralizing the space charge of the electron beam and thereby causing focusing difficulties and destabilization of the beam. The ion collecting electrodes herein are an improvement of those disclosed in the co-pending Rand U.S. patent application Ser. No. 434,252, now U.S. Pat. No. 4,521,900. The electrodes are designed to extract the ions and reduce their neutralizing effect while maintaining a precisely uniform electric field and therefore beam optical aberrations are minimized. In addition, the electrode provides flexibility in the variation of parameters which effect ion extraction and the neutralization fraction.
Abstract:
A scanning electron beam computed tomographic system eliminates axial offset between target and detector by disposing the target, collimator, and detector such that active portions of the target and detector are always diametrically opposite each other. This result is achieved by providing a helical target, collimator, and detector, or by providing planar target, collimator, and detector components that are inclined relative to the vertical axis such that active portions of the target and detector are always diametrically opposite each other. Either configuration eliminates cone beam error and the necessity to correct for same. Further, the system can provide multi-slice scanning of an object that is in constant motion at a critical velocity, without having to interpolate data. Conventional helical scanning may still be undertaken. Detector elements can be disposed axially to improve signal/noise ratio and to produce a cone beam cancellation effect.
Abstract:
An electron beam tomography (EBT) scanning system comprising an electron source generating an electron beam, a target ring that receives the electron beam and emits an x-ray fan beam upon impingement of the electron beam on the target ring, a pair of detector arrays arranged opposite the target ring, and a collimator arranged concentrically between the target ring and the pair of detector arrays. The collimator has interior and exterior walls concentrically arranged with one another and surrounding a patient examination area. The interior and exterior walls have a first set of apertures aligned to collimate the x-ray fan beam into a first collimated beam having a first width and a second collimated beam having a second width. Each collimated beam may form a single or double tomographic slice. The collimated beams are detected by the pair of detector arrays.
Abstract:
Tuning, integrating, and operating an electron beam CT scanning system is simplified by using the fringe field from dipole magnets arranged as a chicane to focus the electron beam, thus replacing conventional quadrupole and solenoid coils. Preferably four "chicane" dipole magnets are series-coupled with the windings in the downstream deflection magnet, such that the chicane magnet X and Y coils are energized 90.degree. out of phase with the deflection magnet coils. The alternating current polarity in the chicane magnets creates an "S"-shaped electron beam trajectory that adequately uniformly focuses over the full cross-section of the electron beam. Winding the coils with a cosine distribution permits rotating the magnetic fields to change the azimuthal and deflecting planes of the electron beam, without disturbing the deflection angle and focusing properties. Chicane electrical current directions and magnet positions are such that the electron beam enters and exists the chicane on the axis of the scanning electron beam CT system. A new type of deflecting magnet is provided that has no end windings, and may be used in other beam optical systems.
Abstract:
A scanning electron beam computed tomographic system eliminates axial offset between target and detector by disposing the target, collimator, and detector such that active portions of the target and detector are always diametrically opposite each other. This result is achieved by providing a helical target, collimator, and detector, or by providing planar target, collimator, and detector components that are inclined relative to the vertical axis such that active portions of the target and detector are always diametrically opposite each other. Either configuration eliminates cone beam error and the necessity to correct for same. Further, the system can provide multi-slice scanning of an object that is in constant motion at a critical velocity, without having to interpolate data. Conventional helical scanning may still be undertaken. Detector elements can be disposed axially to improve signal/noise ratio and to produce a cone beam cancellation effect.
Abstract:
In a scanning electron beam CT system, a positive ion clearing electrode system is disposed within the CT system solenoid coil, and is operated from a single power source. Mounted coaxially about the electron beam, preferably the electrode system includes three sections, each having two electrode elements, one element being coupled to about −800 V to about −2 kV and the other element being grounded. Within the electrode system, the ratio between element diameter and electron beam diameter is substantially constant. Preferably elements are helically twisted about the beam axis. The electrode configuration cancels net quadrupole (focusing) and octopole (aberration-producing) fields. In the presence of electric discharge, essentially zero electron beam displacement and deflections occurs, and changes in focusing strength remain zero.
Abstract:
An x-ray collimator is described which is useful in an electron beam (EB) computed tomography (CT) scanner of the type in which a rotating electron beam is directed to impinge upon a ring-shaped target and the x-rays generated in response thereto are directed to a ring shaped detector array spaced therefrom. The collimator consists of an x-ray blocking septum having an aperture therein, the septum being located in a fixed position substantially co-planer with the planes of the target and the detector, so as to block all x-rays directed from said target to said detector except those which pass through said aperture. Tomographic slice width is determined by the "view" from the spot where the electron beam impinges upon the target, through the aperture, to the detector, and is variable by adjusting the position where the electron beam impinges upon the width of the x-ray target, and in a preferred embodiment, the position of a movable ring. In the preferred embodiment, a movable ring is provide which has a longitudinal axis positioned coaxial with the axis of the aperture and an end face opposed to and parallel with the septum. As well as forming part of the collimator, this ring acts as a pre-collimation radiation shield. This ring is moved concurrently when moving the position where the electron beam impinges upon the width of the x-ray target when the tomographic slice width is varied, by adjusting the spacing between the end face of the moveable ring and the septum.
Abstract:
A method and apparatus are disclosed for reducing variation in a spot size of an electron beam at a target due to multipole aberrations in an electron beam tomography (EBT) scanner. A magnitude of a DC voltage applied to a positive ion electrode (PIE) within the EBT scanner is adjusted and an orientation of a non-circular aperture of the PIE is aligned with respect to the electron beam. A profile of the spot size is monitored while adjusting the magnitude of the DC voltage and while aligning the orientation of the non-circular aperture of the PIE until the variation in the spot size is sufficiently reduced.
Abstract:
A scanning electron beam CT system generates an electron beam along a beam source axis offset from the scanner axis, or axis of symmetry, thereby permitting the X-ray subject to pass completely through the stationary gantry. The electron beam is produced with the first drift tube region of an evacuated housing chamber, and is directed downstream toward a second region that includes a gantry. A scan target and a tuning target, each concentric with and defining a plane normal to the system axis of symmetry, are located in the gantry. A beam optics system, through which the electron beam passes, is located within the housing intermediate the electron gun and gantry. A control system focusses and scans the electron beam upon the scan target, maintaining a beam spot of desired quality. Upon impingement by the scanning beam spot, the scan target emits a fan beam of X-rays. A detector array, concentric with and defining a plane normal to the system axis of symmetry, is located opposite the scan target within the gantry and provides output signals that are computer processed to reconstruct a CT image of a subject placed within the gantry. The scanner axis is preferably above the beam source axis, and preferably the drift tube is straight, defining a drift tube axis that is inclined relative to the scanner axis, or is parallel to the scanner axis but not co-axial therewith. Alternatively, the drift tube may be kinked.