Abstract:
The present application a new and improved system and method of enhanced Lean Document Production (LDP), which applies cellular manufacturing to document printing operations. The LDP process incorporates process friendly cells and, a push model to order to improve efficiency, reduce work in progress and smooth out the “frictions” in production environments. The current application presents an earliest-completion-time strategy for assigning jobs to cells and a dynamic-priority-based-batch-scheduling algorithm.
Abstract:
A system and method is used to manage scheduling of a plurality of print jobs in a multi-site print shop environment. The multi-site environment includes a plurality of print shops each having resources and equipment to complete at least one type of print job. Also included is a multi-site scheduler configuration arranged to assign and schedule print jobs to one of a home shop and a non-home shop. The assigning and scheduling is based on a fastest completion time, wherein a completion time of a print job in a home shop is defined as the actual time taken to complete the print job and a completion time of a print job in a non-home shop is defined as the actual time taken to complete the print job and a transportation delay.
Abstract:
The present application presents a new and improved system and method of enhanced Lean Document Production (LDP), which employs cellular manufacturing concepts. The LDP process incorporates an auto-splitting algorithm and/or an earliest completion route algorithm to generate an operation schedule.
Abstract:
The present application presents a new and improved system and method of enhanced Lean Document Production (LDP), which employs cellular manufacturing concepts. The LDP process incorporates an auto-splitting algorithm and/or an earliest completion route algorithm to generate an operation schedule.
Abstract:
A system and method is used to manage scheduling of a plurality of print jobs in a multi-site print shop environment. The multi-site environment includes a plurality of print shops each having resources and equipment to complete at least one type of print job. Also included is a multi-site scheduler configuration arranged to assign and schedule print jobs to one of a home shop and a non-home shop. The assigning and scheduling is based on a fastest completion time, wherein a completion time of a print job in a home shop is defined as the actual time taken to complete the print job and a completion time of a print job in a non-home shop is defined as the actual time taken to complete the print job and a transportation delay.
Abstract:
The present application a new and improved system and method of enhanced Lean Document Production (LDP), which applies cellular manufacturing to document printing operations. The LDP process incorporates process friendly cells and, a push model to order to improve efficiency, reduce work in progress and smooth out the “frictions” in production environments. The current application presents an earliest-completion-time strategy for assigning jobs to cells and a dynamic-priority-based-batch-scheduling algorithm.
Abstract:
The present application presents a new and improved system and method of enhanced Lean Document Production (LDP), which employs cellular manufacturing concepts. The LDP process utilizes a processor to compute a dynamic production algorithm to generate an indication of a manufacturing or print shop excess capacity level.
Abstract:
The present application presents a new and improved system and method of enhanced Lean Document Production (LDP), which employs cellular manufacturing concepts. The LDP process utilizes a processor to compute a dynamic production algorithm to generate an indication of a manufacturing or print shop excess capacity level.
Abstract:
A method of determining a print shop sustainability metric over a period of time may include, for each of a plurality of print devices in a print shop, determining a low-activity state sustainability metric value associated with the print device operating in one or more low-activity states over a period of time, determining a print shop low-activity state sustainability metric value associated with the print shop, and determining a processing state sustainability metric value associated with the print device operating in a processing state over the period of time, determining a print shop processing state sustainability metric value associated with the print shop, determining a print shop sustainability metric value and displaying one or more of the low-activity state sustainability metric values, the processing state sustainability metric values, the print shop sustainability metric value, the print shop processing state sustainability metric value and the print shop sustainability metric value.
Abstract:
A system for determining a cause of lateness of a print job may include a computing device and a computer-readable storage medium in communication with the computing device. The computer-readable storage medium may include one or more programming instructions for identifying a late print job, identifying a plurality of document production stations that processed at least a portion of the late print job, determining an associated contribution value representing a contribution of the document production station to the lateness, determining sources of the lateness, displaying a first visual depiction that visually depicts a measure of a contribution of each of the identified document production stations to a collective lateness of the print shop, receiving a user selection of one of the document production stations and a time period, and displaying a second visual depiction of one or more print jobs processed by the document production station during the time period.