Abstract:
A locking assembly for a door of a storage container is provided. The storage container defines a door frame, and the door is movably mounted to the door frame. The locking assembly may include a first keeper secured to the door frame, a first locking cam configured to movably engage the first keeper, and a handle assembly coupled to the first locking cam. The handle assembly may be movable between a first position in which the handle assembly is in contact with the door frame and the first locking cam engages the first keeper to maintain the door in the closed position relative to the door frame and a second position in which the first locking cam disengages the first keeper to allow the door to open. The first and second positions of the handle assembly illustratively define an obtuse angle therebetween.
Abstract:
A locking assembly for a door of a storage container is provided. The storage container defines a door frame, and the door is movably mounted to the door frame. The locking assembly may include a first keeper secured to the door frame, a first locking cam configured to movably engage the first keeper, and a handle assembly coupled to the first locking cam. The handle assembly may be movable between a first position in which the handle assembly is in contact with the door frame and the first locking cam engages the first keeper to maintain the door in the closed position relative to the door frame and a second position in which the first locking cam disengages the first keeper to allow the door to open. The first and second positions of the handle assembly illustratively define an obtuse angle therebetween.
Abstract:
A locking assembly for a door of a storage container is provided. The storage container defines a door frame, and the door is movably mounted to the door frame. The locking assembly may include a first keeper secured to the door frame, a first locking cam configured to movably engage the first keeper, and a handle assembly coupled to the first locking cam. The handle assembly may be movable between a first position in which the handle assembly is in contact with the door frame and the first locking cam engages the first keeper to maintain the door in the closed position relative to the door frame and a second position in which the first locking cam disengages the first keeper to allow the door to open. The first and second positions of the handle assembly illustratively define an obtuse angle therebetween.
Abstract:
A locking assembly for a door of a storage container is provided. The storage container defines a door frame, and the door is movably mounted to the door frame. The locking assembly may include a first keeper secured to the door frame, a first locking cam configured to movably engage the first keeper, and a handle assembly coupled to the first locking cam. The handle assembly may be movable between a first position in which the handle assembly is in contact with the door frame and the first locking cam engages the first keeper to maintain the door in the closed position relative to the door frame and a second position in which the first locking cam disengages the first keeper to allow the door to open. The first and second positions of the handle assembly illustratively define an obtuse angle therebetween.
Abstract:
An air suspension system of a tandem axle assembly for a trailer includes a front axle air spring configured to be coupled to a front axle assembly of the tandem axle assembly and a rear axle air spring configured to be coupled to a rear axle assembly of the tandem axle assembly. The air suspension system further includes an air reservoir in fluid communication with the front axle air spring and the rear axle air spring and a ratio valve in fluid communication with the air reservoir, the front axle air spring, and the rear axle air spring. The ratio valve is positioned between the air reservoir and the front axle air spring. Further, the ratio valve is selectively operable to send a lesser amount of air from the air reservoir to the front axle air spring than to the rear axle air spring.
Abstract:
A semi-trailer for transporting circular objects may include a coupler assembly configured to be connected to a towing vehicle, a rear frame member, a pair of side rails joined at rear ends thereof by the rear frame member and at front ends thereof by the coupler assembly, a rear wheel and axle assembly mounted to the side rails between the front and rear ends thereof and at least one transportation well mounted to and between the side rails. The at least one transportation well may extend below the side rails. The at least one transportation well is configured to receive and hold therein while being transported by the semi-trailer at least one circular object.
Abstract:
A side underride cable system configured to be coupled to a trailer includes a front mounting bracket assembly configured to be coupled to the trailer, a rear mounting bracket assembly configured to be coupled to the trailer at a location spaced-apart from the front mounting racket assembly, and a plurality of cables configured to extend at least partially along a length of each side of the trailer between the front mounting bracket assembly and the rear mounting bracket assembly.
Abstract:
A method of forming an inner wall of a sidewall configuration of a trailer is provided which comprises the steps of: (a) providing a plurality of posts, each post having slots provided therethrough; (b) providing at least one pre-configured punching die; (c) providing a one-piece continuous liner; (d) securing the one-piece continuous liner to the plurality of posts; and (e) punching slots through the one-piece continuous liner with the at least one pre-configured punching die. In a first embodiment of the method, step (d) is performed before step (e). In a second embodiment of the method, step (e) is performed before step (d).
Abstract:
A side underride cable system configured to be coupled to a trailer includes a front mounting bracket assembly configured to be coupled to the trailer, a rear mounting bracket assembly configured to be coupled to the trailer at a location spaced-apart from the front mounting racket assembly, and a plurality of cables configured to extend at least partially along a length of each side of the trailer between the front mounting bracket assembly and the rear mounting bracket assembly.
Abstract:
A reinforcement sheet is formed from plurality of tape layers. Each tape layer includes unidirectional fibers held together by thermoplastic resin. The layers are fused together to form a reinforcement sheet. Because the sheet is formed without weaving, pinholes in the sheet are eliminated. As no stitching is required, the sheet can be efficiently manufactured. The sheet can be used in a variety of applications including a subpan, roof or side wall of a refrigerated trailer.