摘要:
Each equal cost path is assigned a path ID created by concatenating an ordered set of link IDs which form the path through the network. The link IDs are created from the node IDs on either set of the link. The link IDs are sorted from lowest to highest to facilitate ranking of the paths. The low and high ranked paths are selected from this ranked list as the first set of diverse paths through the network. Each of the link IDs on each of the paths is then renamed, for example by inverting either all of the high node IDs or low node IDs. After re-naming the links, new path IDs are created by concatenating an ordered set of renamed link IDs. The paths are then re-ranked and the low and high re-ranked paths are selected from this re-ranked list as the second set of diverse paths.
摘要:
Multicast capabilities of a link state protocol controlled network are used to accelerate the flooding advertisement of topology change notifications within portions of the network. This flooding mechanism may be particularly efficient in a network with a large number of two-connected nodes such as a ring network architecture. A control plane specific multicast group address is used when flooding topology change notifications, and a process such as reverse path forwarding check is used as an additional control on forwarding of the notification to prevent looping of control plane packets. Two-connected nodes insert a forwarding entry into their FIB to enable frames containing the control message to be forwarded via the data plane on to the downstream node so that propagation of the control message along a chain of two-connected nodes may occur at data plane speeds.
摘要:
A method of peer interfacing a Link-State controlled network domain with an Ethernet Bridging controlled network domain. A pair of peer attachment points are provided between the Link-State controlled network domain and the Ethernet Bridging domain. The peer attachment points are respective endpoints of a set of one or more LAN segments defined within the Ethernet Bridging domain. The set of LAN segments are represented as a virtual node in the Link-State controlled network domain. The virtual node is represented in the Link-State controlled network domain as connected to each of the peer attachment points via a respective virtual link. The virtual links are configured such that frames to or from an address in the Link-State controlled network domain are forwarded over a tree passing through only one of the peer attachments points.
摘要:
Described are mechanisms for verifying configuration information in 2547 BGP VPNs. An originating PE generates a first knowledge digest encoding first configuration information associated with a current set of information advertised for a VRF. The originating PE also generates a second knowledge digest encoding second configuration information associated with cumulative information advertised for the VRF. The originating PE is capable of receiving a message from a user PE, the message including a third knowledge digest encoding third configuration information related to the user VRF. The originating PE is capable of comparing the first knowledge digest to the third knowledge digest and producing a first indication if the third configuration information encoded in the third knowledge digest is not a subset of the first configuration information encoded in the first knowledge digest.
摘要:
An Ethernet virtual switched sub-network (VSS) is implemented as a virtual hub and spoke architecture overlaid on hub and spoke connectivity built of a combination of Provider Backbone Transport (spokes) and a provider backbone bridged sub-network (hub). Multiple VSS instances are multiplexed over top of the PBT/PBB infrastructure. A loop free resilient Ethernet carrier network is provided by interconnecting Provider Edge nodes through access sub-networks to Provider Tandems to form Provider Backbone Transports spokes with a distributed switch architecture of the Provider Backbone Bridged hub sub-network. Provider Backbone transport protection groups may be formed from the Provider Edge to diversely homed Provider Tandems by defining working and protection trunks through the access sub-network. The Provider Backbone Transport trunks are Media Access Control (MAC) addressable by the associated Provider Edge address or by a unique address associated with the protection group in the Provider Backbone Bridged network domain.
摘要:
Routes may be installed across multiple link state protocol controlled Ethernet network areas by causing ABBs to leak I-SID information advertised by BEBs in a L1 network area into an L2 network area. ABBs will only leak I-SIDs for BEBs where it is the closest ABB for that BEB. Where another ABB on the L2 network also leaks the same I-SID into the L2 network area from another L1 network area, the I-SID is of multi-area interest. ABBs will advertise I-SIDs that are common to the L1 and L2 networks back into their respective L1 network. Within each L1 and L2 network area, forwarding state will be installed between network elements advertising common interest in an ISID, so that multi-area paths may be created to span the L1/L2/L1 network areas. The L1/L2/L1 network structure may recurse an arbitrary number of times.
摘要:
A pseudo-wire merge is disclosed. Communicating with a first communication server enables registration of a first endpoint with the first communication server thereby enabling the first endpoint to establish a communication session under control of the first communication server with a second endpoint coupled to the communication network. Communicating with a second communication server enables registration of the first endpoint with the second communication server while the first endpoint is registered with the first communication server thereby enabling the first endpoint to establish a communication session over the communication network selectively either under the control of the second communication server or under the control of the first communication server.
摘要:
A method of installing forwarding state in a link state protocol controlled network node having a topology database representing a known topology of the network, and at least two ports for communication with corresponding peers of the network node. A unicast path is computed from the node to a second node in the network, using the topology database, and unicast forwarding state associated with the computed unicast path installed in a filtering database (FDB) of the node. Multicast forwarding state is removed for multicast trees originating at the second node if an unsafe condition is detected. Subsequently, a “safe” indication signal is advertised to each of the peers of the network node. The “safe” indication signal comprises a digest of the topology database. A multicast path is then computed from the network node to at least one destination node of a multicast tree originating at the second node. Finally, multicast forwarding state associated with the computed multicast path is installed in the filtering database (FDB) of the network node, when predetermined safe condition is satisfied.
摘要:
A shared (proxy) OAM session is performed in a packet-based network on behalf of a plurality of connections. First and second connections are each routed between respective nodes of the network for carrying data traffic. The second connection shares a portion of the routing of the first connection. The shared OAM session is performed along a path which is co-routed with at least part of the shared portion of the routing of the first connection and the second connection. Failure notification signalling is propagated to an endpoint node of each of the first and second connections when the shared OAM session indicates a failure has occurred. The use of a shared OAM session reduces processing at nodes and reduces OAM traffic. Each connection can be a trunk, such as a PBT/PBB-TE trunk, or a service carried within a trunk.
摘要:
A system for interfacing a client system in a first network domain with a Provider Link State Bridging (PLSB) domain includes at least two Backbone Edge Bridges (BEBs) of the PLSB domain. Each BEB is an end-point of a connection in the first network domain to the client system and an end-point of at least a unicast path in the PLSB domain. An inter-node trunk is provided in the PLSB domain for interconnecting the BEBs. A phantom node is defined in the PLSB domain and is notionally located on the inter-node trunk. Each of the BEBs is configured such that: an ingress packet received from the client system via the connection in the first network domain is forwarded through a path notionally rooted at the phantom node; and an egress packet destined for the client system is forwarded to the client system through the connection in the first network domain.