Buried porous silicon-germanium layers in monocrystalline silicon
lattices
    1.
    发明授权
    Buried porous silicon-germanium layers in monocrystalline silicon lattices 失效
    埋在多晶硅锗层中的单晶硅晶格

    公开(公告)号:US5757024A

    公开(公告)日:1998-05-26

    申请号:US695322

    申请日:1996-07-10

    摘要: Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition. Also monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

    摘要翻译: 具有不同化学组成的埋入多孔半导体层的单晶半导体晶格。 还有具有与其单晶半导体超晶格的化学成分不同的掩埋多孔半导体层的单晶半导体超晶格。 已经生产了单晶硅和多孔硅 - 锗交替层的晶格。 这些单晶晶格已经通过Si和Si-Ge层的外延生长制成,然后构图成台面结构。 台面结构被污渍蚀刻,导致Si-Ge层的粗化,同时具有少量的单晶硅层的孔隙化。 以类似的方式生产的较厚Si-Ge层在室温下发射可见光。

    Selective formation of porous silicon
    3.
    发明授权
    Selective formation of porous silicon 失效
    选择性形成多孔硅

    公开(公告)号:US5421958A

    公开(公告)日:1995-06-06

    申请号:US073019

    申请日:1993-06-07

    IPC分类号: H01L21/306 H01L21/00

    CPC分类号: H01L21/306

    摘要: A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO.sub.3 :H.sub.2 O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70% the porous silicon pattern emits visible light at room temperature.

    摘要翻译: 通过在所述表面中形成晶体缺陷的图案,优选通过将离子铣削光束通过光致抗蚀剂层中的开口施加到表面,然后将所述表面暴露于染色剂,在硅衬底的表面中产生多孔硅的图案 蚀刻剂,如HF:HNO3:H2O。 缺陷晶体将优先蚀刻以形成多孔硅图案。 当多孔硅的无定形含量超过70%时,多孔硅图案在室温下发射可见光。

    Long-wavelength PTSI infrared detectors and method of fabrication thereof
    4.
    发明授权
    Long-wavelength PTSI infrared detectors and method of fabrication thereof 失效
    长波长PTSI红外探测器及其制造方法

    公开(公告)号:US5648297A

    公开(公告)日:1997-07-15

    申请号:US646795

    申请日:1996-05-21

    摘要: Extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime have been demonstrated for the first time. This result was achieved by incorporating a 1-nm-thick p+ doping spike at the PtSi/Si interface. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p+ doping spike and the Schottky image force. The p+ doping spikes were grown by molecular beam epitaxy at 450 degrees Celsius using elemental boron as the dopant source, with doping concentrations ranging from 1.times.10.sup.19 to 1.times.10.sup.21 cm.sup.-3. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p+ spikes.

    摘要翻译: 长波长红外(LWIR)方式的PtSi肖特基红外探测器的延长截止波长已经首次被证明。 该结果通过在PtSi / Si界面上并入1nm厚的p +掺杂尖峰来实现。 由于p +掺杂尖峰和肖特基图像力,由于硅化物/ Si界面附近的增加的电场的组合效应导致延伸的截止波长。 使用元素硼作为掺杂剂源,在450摄氏度下通过分子束外延生长p +掺杂尖峰,掺杂浓度范围为1×10 19至1×10 21 cm -3。 截止波长显示随着p +峰值掺杂浓度的增加而增加。

    Micromachined thermoelectric sensors and arrays and process for producing
    6.
    发明授权
    Micromachined thermoelectric sensors and arrays and process for producing 失效
    微加工热电传感器和阵列及其制造工艺

    公开(公告)号:US6046398A

    公开(公告)日:2000-04-04

    申请号:US190416

    申请日:1998-11-04

    IPC分类号: G01J5/12 H01L35/18 H01L35/00

    CPC分类号: H01L35/18 G01J5/12

    摘要: Linear arrays with up to 63 micromachined thermopile infrared detectors on silicon substrates have been constructed and tested. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi--Te and Bi--Sb--Te thermoelectric elements films. At room temperature and under vacuum these detectors exhibit response times of 99 ms, zero frequency D* values of 1.4.times.10.sup.9 cmHz.sup.1/2 /W and responsivity values of 1100 V/W when viewing a 1000 K blackbody source. The only measured source of noise above 20 mHz is Johnson noise from the detector resistance. These results represent the best performance reported to date for an array of thermopile detectors. The arrays are well suited for uncooled dispersive point spectrometers. In another embodiment, also with Bi--Te and Bi--Sb--Te thermoelectric materials on micromachined silicon nitride membranes, detector arrays have been produced with D* values as high as 2.2.times.10.sup.9 cmHz.sup.1/2 /W for 83 ms response times.

    摘要翻译: 已经构建并测试了在硅衬底上具有多达63个微加工热电堆红外探测器的线性阵列。 每个检测器由具有11个溅射Bi-Te和Bi-Sb-Te热电元件膜的11个热电偶的悬浮氮化硅膜组成。 在室温和真空下,这些检测器的响应时间为99 ms,零频率D *值为1.4x109 cmHz + E,fra 1/2 + EE / W,当查看1000 K黑体源时,响应度值为1100 V / W 。 20 mHz以上唯一测得的噪声源是来自检测器电阻的约翰逊噪声。 这些结果代表迄今为止报道的热电堆检测器阵列的最佳性能。 阵列非常适合于非冷却色散点光谱仪。 在另一个实施方案中,对于微加工氮化硅膜上的Bi-Te和Bi-Sb-Te热电材料,已经生产了具有高达2.2×10 9 cmHz + E的D *值的检测器阵列,为1/2 + EE / W 83 ms响应时间。