Abstract:
A cable terminal and clamp system particularly suited for use in an x-ray tube environment. The cable terminal and clamp system includes a cable socket having cable and terminal ports, each of which defines an axis. The cable terminal and clamp system includes a cable clamp that receives at least a portion of the cable socket. The cable clamp and cable socket are configured so that motion of the cable socket, relative to the cable clamp, along the axis defined by the terminal port is unimpaired, while motion of the cable socket, relative to the cable clamp, along the axis defined by the cable port is precluded. A spring interposed between the cable socket and cable clamp biases the cable socket away from the cable clamp along the axis defined by the terminal port. The cable terminal and clamp system thus accommodates thermal expansion of the terminal, while retaining the terminal in an associated receptacle and maintaining alignment of the cable clamp and cable socket.
Abstract:
In one example, an assembly comprises a hub and a shaft. The hub defines an axis of rotation and includes first and second flanges that at least partly define a substantially cylindrical hub opening. The shaft is connected to the hub and includes a first end and a shaft cavity. The first end is received within the hub opening. The shaft cavity is formed in the first end and includes a bottom having a substantially curved transition area.
Abstract:
Systems, methods and devices for implementing automatic control of focal spot Z axis positioning are disclosed for use with an x-ray device having an x-ray tube positioned within a housing and configured for thermal communication with a temperature control system. Control circuitry, and a position sensing device configured to determine the distance between the focal spot and a reference point related to the x-ray device, are coupled with a control module. The position sensing device sends information concerning the relative distance between the focal spot and the reference point to the control module which compares the received information with a predetermined desired distance. If the received information varies by an unacceptably large margin from the desired distance, the control module sends a corresponding signal to the control circuitry which causes the temperature control system to implement an appropriate change to a heat transfer parameter associated with the x-ray device.
Abstract:
In one example embodiment, an x-ray tube comprises an anode configured to rotate at an operating frequency, and a bearing assembly configured to rotatably support the anode and tuned to a resonant frequency that is different than the operating frequency.
Abstract:
A cathode head is provide that is suitable for use in an x-ray device that includes an anode having a target surface configured and arranged to receive electrons emitted by the cathode head. The cathode head may be constructed of magnetic or non-magnetic material and includes an emitter block carrying a filament that defines a longitudinal axis about which is disposed one or more magnetic coils. The filament is configured and arranged to emit an electron beam that defines a focal spot on the target surface of the anode. The magnetic coil, or coils, disposed about the longitudinal axis defined by the filament generate a magnetic field that enables control of the location of the focal spot on the target surface of the anode.
Abstract:
A stackable container (10) has a generally cylindrical body with a rounded top (12), a rounded bottom (14), and a sidewall (16). A pair of opposed ears (26) formed below the top of the body extend outwardly from the side of the body for attaching ends of a handle (24) used to lift and carry the container. The container has a locking mechanism for stacking the container with a similarly formed container so the containers are securely attached to each other to facilitate their movement. The container has a circumferential lip (18) formed about the top of the container and a pair of opposed notches (30) are formed in the lip. A pair of lugs (32) extend outwardly from the container sidewall and are sized to fit into the notch when two containers are stacked together so to attach the containers to each other and facilitate stacking of the containers. In one embodiment the notches and lugs are aligned with the respective ears; while in another embodiment they are offset from the ears.
Abstract:
A cathode assembly including certain features designed to protect the integrity of a filament contained therein is disclosed. In particular, the cathode assembly is configured to prevent damage to the filament should it inadvertently contact another portion of the cathode assembly. In an example embodiment, an x-ray tube incorporating features of the present invention is disclosed. The x-ray tube includes an evacuated enclosure containing a cathode assembly and an anode. The cathode assembly includes a head portion having a head surface. A slot is defined on the head surface and an electron-emitting filament is included in the slot. A protective surface is defined on the head surface proximate to a central portion of the filament. The protective surface in one embodiment is composed of tungsten and is configure to prevent fusing of the filament to the protective surface should the filament inadvertently contact the protective surface.
Abstract:
Systems, methods and devices for implementing automatic control of focal spot Z axis positioning are disclosed for use with an x-ray device having an x-ray tube positioned within a housing and configured for thermal communication with a temperature control system. Control circuitry, and a position sensing device configured to determine the distance between the focal spot and a reference point related to the x-ray device, are coupled with a control module. The position sensing device sends information concerning the relative distance between the focal spot and the reference point to the control module which compares the received information with a predetermined desired distance. If the received information varies by an unacceptably large margin from the desired distance, the control module sends a corresponding signal to the control circuitry which causes the temperature control system to implement an appropriate change to a heat transfer parameter associated with the x-ray device.
Abstract:
A system for remotely venting an expansion bladder employed in a liquid-filled container, such as an outer housing of an x-ray tube. The remote venting configuration provides the expansion bladder with access to atmospheric pressure existing about the x-ray tube so as to enable it to compensate for pressure changes within the liquid-filled container that occur as a result of liquid heating. Further, the remote nature of the bladder venting system enables the expansion bladder to be positioned within a portion of the outer housing that is radiation shielded, while the remote venting portion of the system is positioned in an unshielded portion of the housing. This eliminates the need to perforate the radiation shielding of the outer housing in order to provide atmospheric pressure to the bladder. Further, the remote vent is semi-permeable so as to prevent liquid escape from the system in the event of bladder rupture.
Abstract:
In one example, an assembly comprises a hub and a shaft. The hub defines an axis of rotation and includes first and second flanges that at least partly define a substantially cylindrical hub opening. The shaft is connected to the hub and includes a first end and a shaft cavity. The first end is received within the hub opening. The shaft cavity is formed in the first end and includes a bottom having a substantially curved transition area.