Abstract:
The present invention relates to systems of methods of detecting and measuring inclusions in liquid metals. More particularly, non-metallic inclusions having a conductivity level different from the liquid metal melt are forced to migrate and are collected on a measurement surface using electromagnetic Lorentz forces. The inclusions and their concentrations are detected at the measurement surface using either an electrostatic detection system or an optical detection system.
Abstract:
The present invention relates to systems of methods of detecting and measuring inclusions in liquid metals. More particularly, non-metallic inclusions having a conductivity level different from the liquid metal melt are forced to migrate and are collected on a measurement surface using electromagnetic Lorentz forces. The inclusions and their concentrations are detected at the measurement surface using either an electrostatic detection system or an optical detection system.
Abstract:
A pulsed thermography defect detection apparatus including active and passive infrared (IR) thermography for non-destructive testing (NDT) of powdermetallic (P/M) components for on-line and off-line inspection.
Abstract:
A pulsed thermography defect detection apparatus including active and passive infrared (IR) thermography for non-destructive testing (NDT) of powdermetallic (P/M) components for on-line and off-line inspection.
Abstract:
Preferred embodiments of the present invention include methods that allow for casting alloys, and preferentially casting wrought alloys to circumvent problems such as, for example, hot tearing. Preferred embodiments of the present invention provide for alloys having predominantly spherical primary α-aluminum grains in their microstructure (i.e., substantially free of dendrites) formed by mixing two liquids of differing compositions that are held at predetermined temperatures, such that when mixed they produce a predetermined alloy composition at a predetermined temperature that is inclined to solidify with a predominantly spherical grain structure that minimizes the alloy's tendency towards hot tearing.
Abstract:
A method for the refining of primary silicon in hypereutectic alloys by mixing at least two hypereutectic alloys into a solid/semi-solid hypereutectic slurry is described. The method provides control of the morphology, size, and distribution of primary Si in a hypereutectic Al—Si casting by mixing a hypereutectic Al—Si liquid with solid hypereutectic Al—Si particles. The invention enables SSM processing of hypereutectic Al—Si alloys.
Abstract:
A method for the refining of primary aluminum in hypoeutectic alloys by mixing a titanium based grain refiner into a solid/semi-solid hypoeutectic slurry is described. The method provides control of the morphology, size, and distribution of primary Al in a hypoeutectic Al—Si casting by mixing a hypoeutectic Al—Si liquid with titanium boron alloys. The invention enables grain refining techniques for SSM casting of hypoeutectic Al—Si alloys.
Abstract:
A method for the refining of primary aluminum in hypoeutectic alloys by mixing at least two hypoeutectic alloys into a solid/semi-solid hypoeutectic slurry is described. The method provides control of the morphology, size, and distribution of primary Al in a hypoeutectic Al—Si casting by mixing a hypoeutectic Al—Si liquid with solid hypoeutectic Al—Si particles to impart desirable mechanical properties. The invention enables SSM molding of hypoeutiectic alloys without the need for secondary processing steps associated with other rheocasting processes.
Abstract:
Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Mn (manganese), Li (lithium), and Fe (iron) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
Abstract:
A method for the refining of primary silicon in hypereutectic alloys by mixing at least two hypereutectic alloys into a solid/semi-solid hypereutectic slurry is described. The method provides control of the morphology, size, and distribution of primary Si in a hypereutectic Al—Si casting by mixing a hypereutectic Al—Si liquid with solid hypereutectic Al—Si particles. The invention enables SSM processing of hypereutectic Al—Si alloys.