Abstract:
Electronic devices and a method of providing electronic warfare (EW) data in an encapsulated architecture in a vehicle are generally described. Emitters targeting the vehicle during a mission may be detected and an observable history of each emitter obtained as a function of time. Properties of each emitter may be both inferred based on the observable history and extracted from locally-stored pre-mission intelligence. The emitter properties, as well as current and historical state and threat level of the emitter and effectiveness of various countermeasures may be stored in an adaptive radar model (ARM) for the emitter. Each emitter may have its own ARM. The ARM may be used to take appropriate countermeasures for a particular emitter, based on the emitter alone or taking into account all of the emitters.
Abstract:
Methods and apparatus to determine a level of inherent jitter for signals from a transmitter and a receiver, and modulate information onto a signal transmitted by the transmitter by using spot jitter (with bandwidth and center frequency modulation) and/or pulse width jitter in a region outside of a data region with inherent jitter to carry communication between systems.
Abstract:
Methods and apparatus to determine a level of inherent jitter for signals from a transmitter and a receiver, and modulate information onto a signal transmitted by the transmitter by using spot jitter (with bandwidth and center frequency modulation) and/or pulse width jitter in a region outside of a data region with inherent jitter to carry communication between systems.
Abstract:
Methods and apparatus to determine a level of inherent jitter for signals from a transmitter and a receiver, and modulate information onto a signal transmitted by the transmitter by using spot jitter (with bandwidth and center frequency modulation) and/or pulse width jitter in a region outside of a data region with inherent jitter to carry communication between systems.
Abstract:
Electronic devices and a method of providing electronic warfare (EW) data in an encapsulated architecture in a vehicle are generally described. Emitters targeting the vehicle during a mission may be detected and an observable history of each emitter obtained as a function of time. Properties of each emitter may be both inferred based on the observable history and extracted from locally-stored pre-mission intelligence. The emitter properties, as well as current and historical state and threat level of the emitter and effectiveness of various countermeasures may be stored in an adaptive radar model (ARM) for the emitter. Each emitter may have its own ARM. The ARM may be used to take appropriate countermeasures for a particular emitter, based on the emitter alone or taking into account all of the emitters.
Abstract:
Methods and apparatus to determine a level of inherent jitter for signals from a transmitter and a receiver, and modulate information onto a signal transmitted by the transmitter by using spot jitter (with bandwidth and center frequency modulation) and/or pulse width jitter in a region outside of a data region with inherent jitter to carry communication between systems.