Abstract:
An apparatus includes a first piston and an opposing second piston, where the first and second pistons are configured to move inward to narrow a space therebetween and to move outward to enlarge the space therebetween. The apparatus also includes a first voice coil actuator having (i) a first voice coil connected to the first piston and (ii) a first magnet connected to the second piston. The apparatus may further include a second voice coil actuator having (i) a second voice coil connected to the second piston and (ii) a second magnet connected to the first piston. Each voice coil actuator may be configured to apply equal and opposite forces on or against the first and second pistons.
Abstract:
A method includes exposing a non-aqueous solution to ultraviolet illumination, where the non-aqueous solution includes one or more lanthanide elements and one or more photo-initiators. The method also includes producing lanthanide nanoparticles using the non-aqueous solution. The non-aqueous solution could be formed by mixing a first non-aqueous solution including the one or more lanthanide elements and a second non-aqueous solution including the one or more photo-initiators. The non-aqueous solution could include one or more metallic salts, where each metallic salt includes at least one lanthanide element. The one or more metallic salts could include erbium chloride, and the one or more photo-initiators could include benzophenone. The non-aqueous solution could include an organic solvent, such as an alcohol.
Abstract:
A pulse-tube cryocooler includes a compressor piston that is axially aligned with a pulse tube. The compressor piston is an annular piston that has a central hole around its axis. An inertance tube, connected to one end of the pulse tube, runs through the central hole in the compressor piston. The cryocooler also includes a balancer that moves in opposition to the compressor piston, to offset the forces in moving the compressor piston. The balancer may also be axially aligned with the pulse tube, the annular piston, and the inertance tube. The alignment of the compressor piston, the pulse tube, and the inertance tube aligns the forces produced by movement of fluid within the cryocooler. This makes it easier to cancel mechanical forces produced by the cryocooler in operation, since all (or most) of the forces are in a single axial direction.
Abstract:
A cryogenic cooler includes a housing, and first, second, and third actuators. The first actuator includes at least one first voice coil and at least one first magnetic circuit, the at least one first voice coil of the first actuator configured to drive a compressor piston, the first actuator causing vibrations to the housing when driving the compressor piston. The second actuator includes at least one second voice coil and at least one second magnetic circuit, the at least one second voice coil of the second actuator configured to reduce the vibrations to the housing caused by driving the compressor piston. The third actuator includes at least one third voice coil and at least one third magnetic circuit, the third actuator configured to drive a displacer piston. The compressor piston, balance mechanism, and displacer piston are concentrically formed within the cryogenic cooler.
Abstract:
An apparatus includes a substrate having a recess and a first insulator submerged in the recess of the substrate. The apparatus also includes a cover having a second insulator that, together with the first insulator, defines an insulated volume. The apparatus further includes one or more components to be cooled located over the first insulator and within the insulated volume. The apparatus could also include one or more electrical conductors located over the first insulator, where at least one of the one or more components is electrically connected to the one or more electrical conductors. The one or more electrical conductors could be submerged in the recess of the substrate. The one or more electrical conductors could be thermally-insulative at cryogenic temperatures and could include carbon nanotubes. The first and second insulators could include foam or aerogel insulation.
Abstract:
A system includes a device, a support structure, and a flexure bearing configured to connect the device to the support structure. The flexure bearing includes an outer hub and an inner hub, where the hubs are configured to be secured to the support structure and to the device. The flexure bearing also includes multiple sets of flexure arms connecting the outer hub and the inner hub, where each set of flexure arms includes symmetric flexure arms. The flexure bearing further includes multiple bridges, where each bridge connects one of the flexure arms in one set of flexure arms to one of the flexure arms in an adjacent set of flexure arms.
Abstract:
Components within a cryocooler are scaled and/or configured for operation at a CMG operating frequency (e.g., 100 Hz) rather than at 30 to 70 Hz, matching the exported disturbances of control moment gyroscopes on the same platform and reducing line-of-sight jitter for electro-optic infrared focal plane array sensors. The smaller piston working volume and other reduced component sizes allow the cryocooler to be smaller and lighter than designs operating at lower frequencies. Combined with an advanced regenerator suitable for the higher frequency operation, the cryocooler has improved cooling efficiency over such lower frequency designs.
Abstract:
A pulse-tube cryocooler includes a compressor piston that is axially aligned with a pulse tube. The compressor piston is an annular piston that has a central hole around its axis. An inertance tube, connected to one end of the pulse tube, runs through the central hole in the compressor piston. The cryocooler also includes a balancer that moves in opposition to the compressor piston, to offset the forces in moving the compressor piston. The balancer may also be axially aligned with the pulse tube, the annular piston, and the inertance tube. The alignment of the compressor piston, the pulse tube, and the inertance tube aligns the forces produced by movement of fluid within the cryocooler.
Abstract:
An apparatus includes a substrate having a recess and a first insulator submerged in the recess of the substrate. The apparatus also includes a cover having a second insulator that, together with the first insulator, defines an insulated volume. The apparatus further includes one or more components to be cooled located over the first insulator and within the insulated volume. The apparatus could also include one or more electrical conductors located over the first insulator, where at least one of the one or more components is electrically connected to the one or more electrical conductors. The one or more electrical conductors could be submerged in the recess of the substrate. The one or more electrical conductors could be thermally-insulative at cryogenic temperatures and could include carbon nanotubes. The first and second insulators could include foam or aerogel insulation.
Abstract:
An apparatus includes a heat exchanger configured to transfer heat to a fluid and to absorb heat from the fluid as the fluid flows between a warm end and a cold end of a cryocooler. The heat exchanger includes at least one section having a substrate of at least one allotropic form of carbon and a layer of nanoparticles on or over the substrate. The heat exchanger could include multiple sections, and each section could include one of multiple substrates and one of multiple layers of nanoparticles. The heat exchanger can further include pores through the multiple sections of the heat exchanger, where the pores are configured to allow the fluid to flow through the heat exchanger and to contact the substrates and the layers of nanoparticles. The nanoparticles could include at least one lanthanide element or alloy, and the substrate could include carbon nanotubes or graphene.