Abstract:
A method for detecting a concealed object in a target comprising a body and the concealed object, the method including emitting, by an emitter, radio frequency (RF) energy toward a direction of the target, receiving, by a receiver, a scattered RF energy reflected from the target, generating, by the receiver, a signal corresponding to the received scattered RF energy, comparing, by a processor, the signal with a plurality of stored RF scattering signatures, each of the RF scattering signatures being associated with an object of interest, and detecting, by the processor, the concealed object when the signal matches one of plurality of RF scattering signatures.
Abstract:
A transducer includes an acoustic reflector, an acoustic coupler and one or more thermoacoustic frames. The acoustic coupler is disposed proximate to an output of the transducer and each of the thermoacoustic frames is disposed between the acoustic reflector and the acoustic coupler. The thermoacoustic frames, the acoustic reflector and the acoustic coupler form a resonator with each of the thermoacoustic frames configured to emit a broadband acoustic signal in response to receiving electrical energy. Additionally, the resonator is configured to emit a narrowband acoustic signal at the transducer output in response to receiving the broadband acoustic signal. A method includes adjusting a frequency of the narrowband acoustic signal by controlling a spacing between the thermoacoustic frames and one or more components of the resonator. Thermoacoustic device embodiments capable of resonant emission of intense ultrasound radiation generated by sheets of multi-walled carbon nanotubes (MWNT) are also disclosed.
Abstract:
A sensor system and method of reducing plasma-induced communication inhibition for a main antenna includes using auxiliary antennas for detecting a density of plasma that affects operation of the main antenna, and re-orienting an electromagnetic field around the main antenna in response to the density detected to reduce effect of the plasma on the main antenna. The auxiliary antennas are also operable for data link communication and switchable such if the density of the plasma inhibits receipt or sending of signals by one of the auxiliary antennas, another one of the auxiliary antennas may be used for data link communication.
Abstract:
A method for detecting a concealed object in a target. The target may include a body and the concealed object. The method may include emitting radio frequency (RF) energy toward a direction of the target, receiving a scattered RF energy reflected from the target, generating a signal corresponding to the received scattered RF energy, comparing the signal with a plurality of stored RF scattering signatures, and detecting the concealed object when the signal matches one of a plurality of RF scattering signatures. Each of the RF scattering signatures may be associated with an object of interest.
Abstract:
A sensor system and method of reducing plasma-induced communication inhibition for a main antenna includes using auxiliary antennas for detecting a density of plasma that affects operation of the main antenna, and re-orienting an electromagnetic field around the main antenna in response to the density detected to reduce effect of the plasma on the main antenna. The auxiliary antennas are also operable for data link communication and switchable such if the density of the plasma inhibits receipt or sending of signals by one of the auxiliary antennas, another one of the auxiliary antennas may be used for data link communication.