摘要:
The invention relates to a process for manufacturing a lithiated electrode, which comprises: the deposition, on a substrate, of several layers of a non-lithiated electrode material and several lithium layers in order to form a multilayer consisting of an alternation of layers of non-lithiated electrode material and lithium layers, this multilayer starting with and terminating with a layer of non-lithiated electrode material; and the thermal annealing of the multilayer thus formed. It also relates to a lithiated electrode that can be obtained by this process and to the uses of this electrode: production of thin-film lithium batteries, especially microbatteries for chip cards, “smart” labels, horological articles, miniaturized communications tools, microsystems; production of thin-film supercapacitors and electrochromic cells.
摘要:
The invention relates to a memristive element (M) formed by: a first electrode (10); a second electrode (30); and an active region (20) making direct electrical contact with said first and second electrodes, characterized in that said active region essentially consists of a thin film of an insertion compound containing at least one alkali metal, said compound being an oxide or chalcogenide of at least one transition metal and being able to conduct both electrons and ions. Non-volatile electronic memory formed from a plurality of such memristive elements.
摘要:
The invention relates to a memristive element (M) formed by: a first electrode (10); a second electrode (30); and an active region (20) making direct electrical contact with said first and second electrodes, characterized in that said active region essentially consists of a thin film of an insertion compound containing at least one alkali metal, said compound being an oxide or chalcogenide of at least one transition metal and being able to conduct both electrons and ions. Non-volatile electronic memory formed from a plurality of such memristive elements.
摘要:
In order to increase the capacity of an “all-solid” type micro-battery, the layer of electrolyte is structured: transversing cavities are created in the flat layer, advantageously at the level of patches of collector material, then filled by anode or cathode material.
摘要:
The lithium-ion microbattery comprises a positive electrode having a first Li+ ion storage capacity and a first thickness made from a first lithium insertion material, an electrolyte and a negative electrode having a second storage capacity and a second thickness made from a second insertion material. The thicknesses are such that the ratio of the first storage capacity over the second storage capacity is greater than or equal to 10 and lower than or equal to 1000. During the first charging of the micro-battery, the Li+ ions are inserted in the negative electrode and completely saturate the second insertion material. When initial charging is continued, they form a metallic lithium layer between the electrolyte and the lithium-saturated negative electrode by electroplating. During the subsequent charging and discharging cycles, only the metallic lithium layer participates in transfer of lithium ions.
摘要:
The microcomponent, for example a microbattery, comprising a stack with at least two superposed layers on a substrate, is made using a single steel mask able to expand under the effect of temperature. The mask comprises at least one off-centered opening. The mask being at a first temperature, a first layer is deposited through the opening of the mask. The mask being at a second temperature, higher than the first temperature, a second layer is deposited through the opening of the mask. Finally, the mask being at a third temperature, higher than the second temperature, a third layer is deposited through the opening of the mask.
摘要:
A lithium microbattery comprises a packaging thin layer formed by a matrix of polymer material in which metallic particles are dispersed. The packaging thin layer constitutes at least a part of the anodic current collector of the lithium microbattery. The polymer material is advantageously obtained from at least a photopolymerizable precursor material chosen from bisphenol A diglycidylether, bisphenol F butanediol diglycidil ether, 7-oxabicylco[4.1.0]heptane-3-carboxylate of 7-oxabicylco[4.1.0]hept-3-ylmethyl and a mixture of bisphenol A and epichloridine. It can also be a copolymer obtained from a homogenous mixture of at least two photopolymerizable precursor materials, respectively acrylate-base, such as diacrylate 1,6-hexanediol and methacrylate, and epoxide-base, for example chosen from bisphenol A diglycidylether, 7-oxabicylco[4.1.0]heptane-3-carboxylate of 7-oxabicylco[4.1.0]hept-3-ylmethyl and a mixture of bisphenol A and epichloridine.
摘要:
This lithium electrochemical device includes a stack of layers suitable for constituting a micro-battery deposited on a substrate and encapsulated using a protective cap sealed onto the substrate. It includes two collectors of the current generated by the micro-battery and at least one insulating layer inert as regards lithium. The collectors and the insulating layer or layers are deposited on the substrate. The protective cap is sealed onto the substrate using the layers constituting the current collectors and the insulating layer or layers. The cap has layers of the same nature, positioned in the same order in line with their respective layers deposited on the substrate, so that when the cap is sealed onto the substrate, the respective layers deposited on the cap and on the substrate come into contact with each other to provide the actual seal of the cap on the substrate.
摘要:
The invention relates to a solid electrolyte, to a process for its manufacture and also to devices comprising it.The electrolyte of the invention is an amorphous solid of formula SivOwCxHyLiz, in which v, w, x, y and z are atomic percentages with 0≦v≦40, 5≦w≦50, x>12, 10≦y≦40, 1≦z≦70, and 95%≦v+w+x+y+z≦100%.The electrolyte of the invention finds application in the field of electronics and microbatteries in particular.
摘要翻译:本发明涉及一种固体电解质,其制造方法以及包含它的装置。 本发明的电解质是式SivOwCxHyLiz的无定形固体,其中v,w,x,y和z是0和nlE的原子百分数; v和nlE; 40,5和nlE; w和nlE; 50,x> 12,10和nlE; y& 1≦̸ z≦̸ 70和95%≦̸ v + w + x + y + z≦̸ 100%。 本发明的电解质特别适用于电子和微电池领域。
摘要:
The method for eliminating metallic lithium on a support comprises a plasma application step. The plasma is formed from a carbon source and an oxygen source with a power comprised between 50 and 400 W. It transforms the metallic lithium into lithium carbonate. The method then comprises a dissolution step of the lithium carbonate in an aqueous solution.