摘要:
An integrated circuit that computes the velocity of a visual stimulus moving between two photoreceptor locations is disclosed. In its most basic version, the circuit comprises two temporal edge detectors with photoreceptors, two pulse-shaping circuits, and one motion circuit on a single silicon chip. Velocity is computed from the signed time delay of the appearance of an image feature at the two photoreceptor locations. Specifically, each temporal edge detector detects a rapid irradiance transient at its photoreceptor location and converts it into a short current spike. This current spike is transformed into two different voltage pulses, a fast pulse and a slowly-decaying pulse, by the pulse-shaping circuit that is coupled to the temporal edge detector. The slowly-decaying voltage pulse produced at one location together with the fast voltage pulse generated at the other location, act as inputs to the motion circuit which generates a signal representative of the speed of motion for one sign or direction of motion. A pair of motion circuits encodes velocity, each motion circuit encoding speed for one of the two opposing directions of motion. The motion circuits are sample-and-hold circuits that use the fast pulse from one location to sample the slowly-decaying pulse from the other location. The individual motion-sensing cells are compact, and are therefore suited for use in dense one-dimensional or two-dimensional imaging arrays. Various embodiments are described.
摘要:
An integrated circuit that computes the velocity of a visual stimulus moving between two photoreceptor locations is disclosed. In its most basic version, the circuit comprises two temporal edge detectors with photoreceptors, two pulse-shaping circuits, and one motion circuit on a single silicon chip. Velocity is computed from the signed time delay of the appearance of an image feature at the two photoreceptor locations. Specifically, each temporal edge detector de tects a rapid irradiance transient at its photoreceptor location and converts it into a short current spike. This current spike is transformed into two different voltage pulses, a fast pulse and a slowly-decaying pulse, by the pulse-shaping circuit that is coupled to the temporal edge detector. The slowly-decaying voltage pulse produced at one location together with the fast voltage pulse generated at the other location, act as inputs to the motion circuit which generates a signal representative of the speed of motion for one sign or direction of motion. A pair of motion circuits encodes velocity, each motion circuit encoding speed for one of the two opposing directions of motion. The motion circuits are sample-and-hold circuits that use the fast pulse from one location to sample the slowly-decaying pulse from the other location. The individual motion-sensing cells are compact, and are therefore suited for use in dense one-dimensional or two-dimensional imaging arrays. Various embodiments are described.
摘要:
An integrated circuit that computes the velocity of a visual stimulus moving between two photoreceptor locations is disclosed. In its most basic version, the circuit comprises two temporal edge detectors with photoreceptors, two pulse-shaping circuits, and one motion circuit on a single silicon chip. Velocity is computed from the signed time delay of the appearance of an image feature at the two photoreceptor locations. Specifically, each temporal edge detector detects a rapid irradiance transient at its photoreceptor location and converts it into a short current spike. This current spike is transformed into two different voltage pulses, a fast pulse and a slowly-decaying pulse, by the pulse-shaping circuit that is coupled to the temporal edge detector. The slowly-decaying voltage pulse produced at one location together with the fast voltage pulse generated at the other location, act as inputs to the motion circuit which generates a signal representative of the speed of motion for one sign or direction of motion. A pair of motion circuits encodes velocity, each motion circuit encoding speed for one of the two opposing directions of motion. The motion circuits are sample-and-hold circuits that use the fast pulse from one location to sample the slowly-decaying pulse from the other location. The individual motion-sensing cells are compact, and are therefore suited for use in dense one-dimensional or two-dimensional imaging arrays. Various embodiments are described.
摘要:
An integrated circuit that computes the velocity of a visual stimulus moving between two photoreceptor locations is disclosed. In its most basic version, the circuit comprises two temporal edge detectors with photoreceptors, two pulse-shaping circuits, and one motion circuit on a single silicon chip. Velocity is computed from the signed time delay of the appearance of an image feature at the two photoreceptor locations. Specifically, each temporal edge detector detects a rapid irradiance transient at its photoreceptor location and converts it into a short current spike. This current spike is transformed into two different voltage pulses, a fast pulse and a slowly-decaying pulse, by the pulse-shaping circuit that is coupled to the temporal edge detector. The slowly-decaying voltage pulse produced at one location together with the fast voltage pulse generated at the other location, act as inputs to the motion circuit which generates a signal representative of the speed of motion for one sign or direction of motion. A pair of motion circuits encodes velocity, each motion circuit encoding speed for one of the two opposing directions of motion. The motion circuits are sample-and-hold circuits that use the fast pulse from one location to sample the slowly-decaying pulse from the other location. The individual motion-sensing cells are compact, and are therefore suited for use in dense one-dimensional or two-dimensional imaging arrays. Various embodiments are described.
摘要:
An integrated circuit that computes the velocity of a visual stimulus moving between two photoreceptor locations is disclosed. In its most basic version, the circuit comprises two temporal edge detectors with photoreceptors, two pulse-shaping circuits, and one motion circuit on a single silicon chip. Velocity is computed from the signed time delay of the appearance of an image feature at the two photoreceptor locations. Specifically, each temporal edge detector detects a rapid irradiance transient at its photoreceptor location and converts it into a short current spike. This current spike is transformed into two different voltage pulses, a fast pulse and a slowly-decaying pulse, by the pulse-shaping circuit that is coupled to the temporal edge detector. The slowly-decaying voltage pulse produced at one location together with the fast voltage pulse generated at the other location, act as inputs to the motion circuit which generates a signal representative of the speed of motion for one sign or direction of motion. A pair of motion circuits encodes velocity, each motion circuit encoding speed for one of the two opposing directions of motion. The motion circuits are sample-and-hold circuits that use the fast pulse from one location to sample the slowly-decaying pulse from the other location. The individual motion-sensing cells are compact, and are therefore suited for use in dense one-dimensional or two-dimensional imaging arrays. Various embodiments are described.
摘要:
An optical transient sensor circuit includes a photodiode in series with a MOS feedback transistor connected across a voltage difference. An inverting amplifier having its input connected to the common connection between the photodiode and the MOS feedback transistor and its output connected to an output-node for a measure of the incoming irradiance. A charge/discharge circuit, having an input connected to the output of the inverting amplifier, having an output connected to the gate of the MOS feedback transistor and having a first and second output for half-wave rectified and thresholded contrast encoding measures of positive and negative irradiance transients. A capacitor connected between a constant potential and the gate of the MOS feedback transistor.
摘要:
A wearable system for monitoring a plurality of physiological signals is provided. The wearable system includes at least one sensor producing the physiological signals associated with a patient. A processor unit receives the physiological signals from the at least one sensor. The processor unit analyzes the physiological signals to determine the occurrence of a triggered event and produces at least one output signal identifying the triggered event. A transmission unit receives the at least one output signal and prepares for transmission of the at least one output signal.
摘要:
A speech processing system includes a plurality of signal analyzers that extract salient signal attributes of an input voice signal. A difference module computes the differences in the salient signal attributes. One or more control modules control a plurality of speech generators using an output signal from the difference module in a speech-locked loop (SLL), the speech generators use the output signal to generate a voice signal.
摘要:
An energy-efficient photoreceptor apparatus and a transimpedance amplifier apparatus having high energy-efficiency and low power consumption of which are achieved through multiple distributed gain amplification stages, adaptive loop gain control circuitry and unilateralization, thereby enabling fast and precise performance over a wide range of input-current levels. The high-energy efficiency, robust feedback stability and performance of the present invention can be utilized to achieve sub-milliwatt pulse oximeters and may be employed in other current-to-voltage amplification and conversion applications. The use of analog processing on the outputs of the photoreceptor apparatus also helps lower the overall power of pulse oximeters.
摘要:
A system and technique for providing to flexible, programmable frequency estimators and spectrum analyzers that can operate over extremely large bandwidths and yet provide high spectral resolution are described. The acquisition time and hardware complexity of one technique scale as O(N), where N denotes the number of frequency bins acquired. Embodiments are disclosed in which architectures are implemented using exponentially-tapered transmission lines and filter cascades.