Abstract:
A method is described for determining brain shift, such as the brain shift that occurs following a neurosurgical intervention. The method comprises taking a first image of the brain (4) of a subject, the first image showing the position of blood vessels (20) in the brain relative to a reference position (30). A second image of the brain (4), that has been acquired following an intervention on the subject is also taken. This second image has been acquired using computed tomography (CT) imaging apparatus, The second image shows the position of blood vessels (20′) in the brain relative to the reference position (30). Brain shift is then determined from the shift in position of the blood vessels in at least one region of interest (32) of the brain, with respect to the reference position (30), between the first and second images. Corresponding apparatus is also described.
Abstract:
Apparatus for delivering therapeutic agents to the central nervous system of a subject is described. The apparatus includes at least one intracranial catheter and a percutaneous access device. The percutaneous access device includes a body having at least one extracorporeal surface and at least one subcutaneous surface, the body defining at least one port for connection to an implanted intracranial catheter. The port is accessible from the extracorporeal surface of the device, but is provided with a seal such as a rubber bung between the lumen of the port and the extracorporeal surface. The percutaneous access device may have more than two ports and/or a flange. A method of implanting the percutaneous access device is also described.
Abstract:
A method for delivering fluid to a brain of a subject using a modular fluid delivery apparatus is described. The method comprises taking a subject having a first part of the modular fluid delivery apparatus subcutaneously implanted therein, the first part of the modular fluid delivery apparatus comprising a first end having a first fluid connector portion attached thereto and a second end being connected to one or more catheters implanted within the brain of the subject. The method also comprises taking a second part of the modular fluid delivery apparatus, the second part comprising a third end comprising a second fluid connector portion. The method further comprises making an incision in the subject to gain access to the first fluid connector portion of the first part of the modular fluid delivery apparatus, and connecting the first fluid connector portion to the second fluid connector portion.
Abstract:
Percutaneous access apparatus is described that comprises a percutaneous fluid access device having an extracorporeal portion, one or more ports accessible from the extracorporeal portion and a septum for sealing each port. A connector device comprising one or more hollow needles is attachable to the percutaneous fluid access device. The apparatus also includes an attachment mechanism for attaching the connector device to the extracorporeal portion and an actuation mechanism that, after the connector device has been attached to the extracorporeal portion, can be used to drive the one or more hollow needles through the septum to establish fluid communication between the one or more hollow needles and the one or more ports. The apparatus may be used for neurosurgery applications.
Abstract:
A method for delivering fluid to a brain of a subject is disclosed. This method includes the steps of: making one or more incisions in a subject; implanting one or more catheters in the brain of the subject; subcutaneously implanting a first part of a modular fluid delivery apparatus in the subject, the first part of the modular fluid delivery apparatus comprising a first length of tubing having a first end and a second end, the first end having a first fluid connector portion attached thereto and the second end being connected to the one or more catheters; and closing the one or more incisions such that the first part of the modular fluid delivery apparatus and the one or more catheters are entirely subcutaneously implanted within the subject.
Abstract:
Apparatus for delivering therapeutic agents to the central nervous system of a subject is described. The apparatus includes at least one intracranial catheter and a percutaneous access device. The percutaneous access device includes a body having at least one extracorporeal surface and at least one subcutaneous surface, the body defining at least one port for connection to an implanted intracranial catheter. The port is accessible from the extracorporeal surface of the device, but is provided with a seal such as a rubber bung between the lumen of the port and the extracorporeal surface. The percutaneous access device may have more than two ports and/or a flange. A method of implanting the percutaneous access device is also described.