Abstract:
A wideband direction finding (WBDF) aperture employs a limited number of extreme wideband end-fire antenna elements capable of covering a wide frequency bandwidth. Arranging variable sized antenna elements in a specific pattern, the WBDF aperture enables direction finding capability covering an extreme wide frequency band. The pattern arrangement of variable sized elements offers the signal discernment to limit ambiguities in signal angle of arrival. This small form factor design enables the WBDF aperture to be mounted on the surface of a missile, munition, or small UAS wing or fuselage. The WBDF aperture offers a combination of differing sized antenna elements arranged in a specific pattern, combined with direction finding and signal tracking to provide an unambiguous relative azimuth and elevation angle of the target.
Abstract:
A wideband direction finding (WBDF) aperture employs a limited number of extreme wideband end-fire antenna elements capable of covering a wide frequency bandwidth. Arranging variable sized antenna elements in a specific pattern, the WBDF aperture enables direction finding capability covering an extreme wide frequency band. The pattern arrangement of variable sized elements offers the signal discernment to limit ambiguities in signal angle of arrival. This small form factor design enables the WBDF aperture to be mounted on the surface of a missile, munition, or small UAS wing or fuselage. The WBDF aperture offers a combination of differing sized antenna elements arranged in a specific pattern, combined with direction finding and signal tracking to provide an unambiguous relative azimuth and elevation angle of the target.
Abstract:
An antenna is provided from a plurality of antenna elements, each having a pair of orthogonally coupled notch elements coupled to an interleaved stripline-to-slot feed structure. Each dual-polarized, interleaved tapered slot antenna element forms a building block and a plurality of such tapered slot antenna elements can be arranged to form a phased array antenna having a triangular lattice pattern. The phased array antenna is capable of receiving electromagnetic signals having orthogonal polarization and includes a feed structure which provides interconnections on a single plane. The structure of the tapered slot antenna structure provides wideband, wide scan performance, for multiple polarizations without requiring electrical continuity between adjacent notch antenna elements.
Abstract:
An antenna is provided from a plurality of antenna elements, each having a pair of orthogonally coupled notch elements coupled to an interleaved stripline-to-slot feed structure. Each dual-polarized, interleaved tapered slot antenna element forms a building block and a plurality of such tapered slot antenna elements can be arranged to form a phased array antenna having a triangular lattice pattern. The phased array antenna is capable of receiving electromagnetic signals having orthogonal polarization and includes a feed structure which provides interconnections on a single plane. The structure of the tapered slot antenna structure provides wideband, wide scan performance, for multiple polarizations without requiring electrical continuity between adjacent notch antenna elements.
Abstract:
A tunable electromagnetic device includes at least two overlapping metamaterial layers, wherein the metamaterial layers are selectively tunable by patterned conductive structures that are parts of the metamaterial layers. By selectively altering the properties of the metamaterial layers with the patterned conductive structures, the frequency response of the electromagnetic device can be controlled, to selectively let electromagnetic energy of certain frequencies pass through, or alternatively to prevent pass-through of substantially all frequencies of electromagnetic energy. In addition the frequencies for which electromagnetic energy passes through may be altered by controlling one or more of the tunable metamaterial layers. The tunable electromagnetic device may be used to selectively shield radar or other types of sensors, for example being used as all or part of the skin of a vehicle or other object.