Abstract:
A scanning device generally produces an image having a uniform resolution throughout a target region. To improve radar scanning/lidar scanning, an efficient scan approach to enable a radar device/lidar device to adoptively perform a scan of a target region based on interested regions and/or an adjustable resolution. The apparatus may be a scanning device for scanning. The apparatus performs a first scan over a target region to obtain a plurality of first scan samples at a plurality of locations within the target region. The apparatus generates a saliency map of the target region based on signal intensities of the plurality of first scan samples. The apparatus determines a salient region within the target region based on the saliency map. The apparatus performs at least one second scan over the salient region to obtain at least one second scan sample in the salient region.
Abstract:
Certain aspects of the present disclosure relate to a method for compressed sensing (CS). The CS is a signal processing concept wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. In this disclosure, the CS framework is applied for sensor signal processing in order to support low power robust sensors and reliable communication in Body Area Networks (BANs) for healthcare and fitness applications.
Abstract:
Certain aspects of the present disclosure relate to a method for quantizing signals and reconstructing signals, and/or encoding or decoding data for storage or transmission. Points of a signal may be determined as local extrema or points where an absolute rise of the signal is greater than a threshold. The tread and value of the points may be quantized, and certain of the quantizations may be discarded before the quantizations are transmitted. After being received, the signal may be reconstructed from the quantizations using an iterative process.
Abstract:
A method of frequency discrimination associated with the Doppler effect is presented. The method includes mapping a first signal to a first plurality of frequency bins and a second signal to a second plurality of frequency bins. The first signal and the second signal corresponding to different times. The method also includes firing a first plurality of neurons based on contents of the first plurality of frequency bins and firing a second plurality of neurons based on contents of the second plurality of frequency bins.
Abstract:
Methods, systems, and devices are described for identifying noisy regions in a skin conductance signal. The signal is divided into a plurality of windows. Two or more features of the signal within a first window are computed. At least one of the two or more features being in a frequency domain. At least two of the features are combined to obtain at least a first metric. The first metric is compared to a corresponding threshold. The first window is identified as a noisy region of the skin conductance signal based on the comparison.
Abstract:
A method of quantizing a floating point machine learning network to obtain a fixed point machine learning network using a quantizer may include selecting at least one moment of an input distribution of the floating point machine learning network. The method may also include determining quantizer parameters for quantizing values of the floating point machine learning network based at least in part on the at least one selected moment of the input distribution of the floating point machine learning network to obtain corresponding values of the fixed point machine learning network.
Abstract:
In an embodiment, a vehicle controller determines a predicted driving performance level of a vehicle driving control entity (VDCE) while the vehicle is controlled by a different VDCE. Driving control is transitioned to the VDCE, after which an actual driving performance level of the VDCE is monitored. The vehicle controller determines whether to transition driving control away from the VDCE based on the actual driving performance level. In another embodiment, after transition driving control to a VDCE, a period of heightened scrutiny used to evaluate the actual driving performance level of the VDCE specifically after the transition.
Abstract:
In an embodiment, a vehicle controller determines a predicted driving performance level of a vehicle driving control entity (VDCE) while the vehicle is controlled by a different VDCE. Driving control is transitioned to the VDCE, after which an actual driving performance level of the VDCE is monitored. The vehicle controller determines whether to transition driving control away from the VDCE based on the actual driving performance level. In another embodiment, after transition driving control to a VDCE, a period of heightened scrutiny used to evaluate the actual driving performance level of the VDCE specifically after the transition.
Abstract:
A method of blink and averted gaze avoidance with a camera includes detecting an averted gaze of a subject and/or one or more closed eyes of the subject in response to receiving an input to actuate a camera shutter. The method also includes scheduling actuation of the camera shutter to a future estimated time period to capture an image of the subject when a gaze direction of the subject is centered on the camera and/or both eyes of the subject are open.
Abstract:
Methods, systems, and devices are described for identifying noisy regions in a skin conductance signal. The signal is divided into a plurality of windows. Two or more features of the signal within a first window are computed. At least one of the two or more features being in a frequency domain. At least two of the features are combined to obtain at least a first metric. The first metric is compared to a corresponding threshold. The first window is identified as a noisy region of the skin conductance signal based on the comparison.