Abstract:
A method, an apparatus, and a computer program product are provided. The apparatus may be a UE. The UE has a processor including a plurality of cores. The plurality of cores includes a first core and remaining cores. The UE determines a temperature of the first core of the plurality of cores. The first core processes a load. The UE determines that the temperature of the first core is greater than a first threshold. The UE determines that the temperature of the first core is not greater than a second threshold. The second threshold is greater than the first threshold. The UE transfers at least a portion of the load of the first core to a second core of the remaining cores in response to determining that the temperature of the first core is greater than the first threshold.
Abstract:
An apparatus is presented. The apparatus includes a first circuit configured to predict temperatures of a location for a plurality of time instances based on measured temperatures and a second circuit configured to schedule a thermal mitigation function based on the predicted temperatures. A method of operating an apparatus is presented. The method includes measuring temperatures on an integrated circuit, predicting temperatures of a location for a plurality of time instances based on the measured temperatures, and scheduling a thermal mitigation function based on the predicted temperatures. An apparatus is presented. The apparatus includes means for measuring temperatures on an integrated circuit, means for predicting temperatures of a location for a plurality of time instances based on measured temperatures, and means for scheduling a thermal mitigation function based on the predicted temperatures.
Abstract:
An apparatus is disclosed. The apparatus includes a circuit, a conductor interconnecting a portion of the circuit, and a processor configured to determine a temperature of the conductor and adjust at least one parameter related to the conductor in response to the determined temperature rising above a threshold. The at least one parameter includes a lifetime estimate for the conductor. A method of operating an apparatus including a circuit and a conductor interconnecting a portion of the circuit is disclosed. The method includes determining a temperature of the conductor, and adjusting at least one parameter related to the conductor in response to the determined temperature rising above a threshold. The parameter includes a lifetime estimate for the conductor.
Abstract:
An apparatus is provided. The apparatus includes a plurality of counters configured to count electrical activity switching events of cores, a first circuit configured to predict a temperature at a location based on counts of at least one of the plurality of counters, and a second circuit configured to schedule a thermal mitigation function based on the predicted temperature. A method for scheduling thermal mitigation functions is provided. The method includes counting electrical activity switching events, predicting a temperature at a location based on the counting of the electrical activity switching events, and scheduling a thermal mitigation function based on the predicted temperature. Another apparatus is provided. The apparatus includes means for counting electrical activity switching events, means for predicting a temperature at a location based on a count of the electrical activity switching events, and means for scheduling a thermal mitigation function based on the predicted temperature.
Abstract:
A temperature sensor position offset error correction power implementation include monitors (e.g., digital power monitor/meter) to measure activity on a die, and uses the activity measurements to compute real-time temperature offsets by converting activity to power, which can be used in a simplified compact thermal model. A system on chip including the die receives a temperature measurement of a region of the system on chip from a sensor. Power consumed by the region is estimated based on the measured activity, and temperature measurement of the system on chip is adjusted based on the estimated power.
Abstract:
A thermal controller for managing thermal energy of a multi-core processor is provided. The cores include a first core processing a load and remaining cores. The thermal controller is configured to determine that a temperature of the first core is greater than a first threshold, determine a temperature of a second core of the remaining cores in response to determining that the temperature of the first core is greater than the first threshold, and determine whether the temperature of the second core is greater than or less than a second threshold. The thermal controller is configured to transfer at least a portion of the load of the first core to the second core in response to determining that the temperature of the first core is greater than the first threshold and based on whether the temperature of the second core is greater than or less than the second threshold.