Abstract:
Dynamic load balancing of hardware threads in clustered processor cores using shared hardware resources, and related circuits, methods, and computer readable media are disclosed. In one aspect, a dynamic load balancing circuit comprising a control unit is provided. The control unit is configured to determine whether a suboptimal load condition exists between a first cluster and a second cluster of a clustered processor core. If a suboptimal load condition exists, the control unit is further configured to transfer a content of private register(s) of a first hardware thread of the first cluster to private register(s) of a second hardware thread of the second cluster via shared hardware resources of the first hardware thread and the second hardware thread. The control unit is also configured to exchange a first identifier associated with the first hardware thread with a second identifier associated with the second hardware thread via the shared hardware resources.
Abstract:
Dynamic load balancing of hardware threads in clustered processor cores using shared hardware resources, and related circuits, methods, and computer readable media are disclosed. In one aspect, a dynamic load balancing circuit comprising a control unit is provided. The control unit is configured to determine whether a suboptimal load condition exists between a first cluster and a second cluster of a clustered processor core. If a suboptimal load condition exists, the control unit is further configured to transfer a content of private register(s) of a first hardware thread of the first cluster to private register(s) of a second hardware thread of the second cluster via shared hardware resources of the first hardware thread and the second hardware thread. The control unit is also configured to exchange a first identifier associated with the first hardware thread with a second identifier associated with the second hardware thread via the shared hardware resources.
Abstract:
A processor includes priority adjustment circuitry configured to adjust a priority of a thread of multiple threads configured to execute tasks to have a software-defined priority value or a designated high priority value. The processor also includes circuitry configured to identify a lowest priority thread of the multiple threads and a control unit configured to cause the lowest priority thread to take a pending interrupt.
Abstract:
Dynamic load balancing of hardware threads in clustered processor cores using shared hardware resources, and related circuits, methods, and computer readable media are disclosed. In one aspect, a dynamic load balancing circuit comprising a control unit is provided. The control unit is configured to determine whether a suboptimal load condition exists between a first cluster and a second cluster of a clustered processor core. If a suboptimal load condition exists, the control unit is further configured to transfer a content of private register(s) of a first hardware thread of the first cluster to private register(s) of a second hardware thread of the second cluster via shared hardware resources of the first hardware thread and the second hardware thread. The control unit is also configured to exchange a first identifier associated with the first hardware thread with a second identifier associated with the second hardware thread via the shared hardware resources.