Abstract:
Disclosed is a method and apparatus for power-efficiently processing sensor data. In one embodiment, the operations implemented include: configuring a sensor fusion engine and a peripheral controller with a general purpose processor; placing the general purpose processor into a low-power sleep mode; reading data from a sensor and storing the data into a companion memory with the peripheral controller; processing the data in the companion memory with the sensor fusion engine; and awaking the general purpose processor from the low-power sleep mode.
Abstract:
A system and method for providing a multimodal list of transceiver devices to a remote terminal is disclosed. A positioning unit determines a location of a remote terminal. A processor identifies transceivers for communicating in at least a first communication mode and a second communication mode according to the location of the remote terminal. The processor retrieves information about the identified transceivers from a database and generates a multimodal list. The processor causes a transceiver to transmit the multimodal list of transceiver devices to the remote terminal using a communication mode of the remote terminal.
Abstract:
A mobile wireless device locating method at a mobile wireless device includes: determining, based at least in part on measurements of first signals, first location information for the mobile wireless device; sending a request for transceiver information based on the first location information; receiving the transceiver information at the mobile wireless device, the transceiver information including transceiver identifiers and corresponding locations; measuring second signals from at least some of the transceivers included in the transceiver information, at least one of the second signals being from an uncooperative terrestrial base station capable of bi-directional communications and configured to prevent data and/or voice communications with the mobile wireless device; and determining second location information for the mobile wireless device using information obtained from measuring the second signals.
Abstract:
Methods, systems, computer-readable media, and apparatuses for obtaining at least one bodily function measurement are presented. A mobile device includes an outer body sized to be portable for user, a processor contained within the outer body, and a plurality of sensors physically coupled to the outer body. The sensors are configured to obtain a first measurement indicative of blood volume and a second measurement indicative of heart electrical activity in response to a user action. A blood pressure measurement is determined based on the first measurement and the second measurement. The sensors also include electrodes where a portion of a user's body positioned between the electrodes completes a circuit and a measurement to provide at least one measure of impedance associated with the user's body. A hydration level measurement is determined based on the measure of impedance.
Abstract:
Techniques for display rotation are disclosed. In one aspect, raw angular motion sensor (AMS) data can be accessed. A motion state of the mobile device can be determined based at least in part on processing the raw AMS data. AMS data can be further processed to determine whether to perform a rotation of the display image based at least in part on applying at least one pre-defined criterion to the AMS data.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for improved machine learning. Voice data from a first user is received. In response to determining that the voice data includes an utterance of a defined keyword, a user verification score is generated by processing the voice data using a first user verification machine learning (ML) model, and a quality of the voice data is determined. In response to determining that the user verification score and determined quality satisfy one or more defined criteria, a second user verification ML model is updated based on the voice data.
Abstract:
A device includes a first stage keyword detector and a processor. The processor is configured to, based on a signal indicating a keyword detection by the first stage keyword detector and prior to confirmation of the keyword detection, initiate a change of state to enable a voice service that is in a low-power mode to be scheduled for execution on one or more reserved processor cores.
Abstract:
Systems, methods, and non-transitory media are provided for presenting information associated with at least one input option. An example method can include receiving data identifying one or more input options associated with a first device in a scene; determining, including using at least one memory, information relevant to at least one of the scene, the first device, and a user associated with a second device; and based on the one or more input options and the information, output user guidance data corresponding to an input option for which relevant context information has been determined.
Abstract:
Methods, systems, computer-readable media, and apparatuses for obtaining at least one bodily function measurement are presented. A mobile device includes an outer body sized to be portable for user, a processor contained within the outer body, and a plurality of sensors physically coupled to the outer body. The sensors are configured to obtain a first measurement indicative of blood volume and a second measurement indicative of heart electrical activity in response to a user action. A blood pressure measurement is determined based on the first measurement and the second measurement. The sensors also include electrodes where a portion of a user's body positioned between the electrodes completes a circuit and a measurement to provide at least one measure of impedance associated with the user's body. A hydration level measurement is determined based on the measure of impedance.
Abstract:
A method for assisting in locating a position of a mobile wireless device includes: obtaining location information of an approximate location of the mobile wireless device; generating an almanac of base stations based at least in part on proximity of locations of the base stations to the approximate location of the mobile wireless device, the almanac of base stations comprising at least one cooperative terrestrial base station that can communicate with the mobile wireless device in at least one mode and at least one uncooperative terrestrial base station capable of bi-directional communications and configured to prevent data and voice communications with the mobile wireless device, the at least one uncooperative terrestrial base station being configured to acknowledge a message received from the mobile wireless device; and providing the almanac of base stations to the mobile wireless device.