Abstract:
Methods, systems, and devices are provided that reduce delay in establishing connectivity between wireless devices when either device detects a session overlap condition during a wireless network setup. In response to detecting the session overlap condition at a first node, the first node made transmit a notification to a second node to switch from the first setup procedure to a second setup procedure using a vendor specific information element.
Abstract:
Methods, systems, and devices are provided that reduce delay in establishing connectivity between wireless devices when either device detects a session overlap condition during a wireless network setup. In response to detecting the session overlap condition at a first node, the first node made transmit a notification to a second node to switch from the first setup procedure to a second setup procedure using a vendor specific information element.
Abstract:
Embodiments relate to systems and methods for enabling stations to connect to wireless hotspots using non-Unicode service set identification information. A WiFi™ wireless router or other access point can broadcast beacon information to smart phones or other stations within wireless range of that device. In existing access point implementations, the character set in which the access point broadcasts this information, including a service set identification indicating the connection services available from the access point, are assumed to be encoded in Unicode format, specifically, UTF-8 format. While English-language options are properly displayed, character sets and/or languages which are not encoded in Unicode (UTF-8) format are translated into unintelligible characters using this approach. According to embodiments, access point hardware can be configured to broadcast the type of character set encoding in the beacon information itself, for instance, in existing SSID information elements, vendor-specific information elements, and/or other locations in the beacon data.
Abstract:
Systems and methods are disclosed for wireless communication including transmitting a beacon comprising group traffic information indicating whether group traffic is buffered for transmission and multicast/broadcast (MB) information indicating a type of the buffered group traffic with a first node. The beacon may be received by a second node, allowing the type of the buffered group traffic to be determined from the MB information. Types of buffered group traffic include multicast data, broadcast data and both multicast and broadcast data. As desired, the second node may enter a power save mode of operation upon determining that the type of buffered group data is not currently of interest.
Abstract:
Systems and methods are disclosed for a first WiFi Direct device to receive a machine-readable label from a second WiFi Direct device to provide information on the P2P WiFi capability of the second WiFi Direct device to aid the two devices in establishing a WiFi Direct connection. The machine-readable label may include the display of a QR code by the second WiFi Direct device to the first WiFi Direct device. The information on the WiFi capability of the second WiFi Direct device may include the identity of the listen channel, the operating channel, whether the device is a P2P group owner or not (e.g., a P2P client device), and other service and/or configuration information. Because the first WiFi Direct device knows whether the second WiFi Direct device is a group owner or not, the first WiFi Direct device may take the appropriate connection to establish the WiFi Direct connection.
Abstract:
A method and apparatus to save power in a soft access point for a network. If no network traffic is detected for an integral number of TBTT (Target Beacon Transmission Time) intervals immediately prior to a current TBTT interval, and if no network traffic is detected for a first time slot in the current TBTT interval, then the soft access point sends a CTS (Clear-to-Send) packet addressed to itself to quiet the network for a second time slot and enters a low power mode for the second time slot. At the beginning of a third time slot, the soft access point puts itself into an active mode and monitors network traffic.
Abstract:
Systems and methods are disclosed for a first WiFi Direct device to receive a machine-readable label from a second WiFi Direct device to provide information on the P2P WiFi capability of the second WiFi Direct device to aid the two devices in establishing a WiFi Direct connection. The machine-readable label may include the display of a QR code by the second WiFi Direct device to the first WiFi Direct device. The information on the WiFi capability of the second WiFi Direct device may include the identity of the listen channel, the operating channel, whether the device is a P2P group owner or not (e.g., a P2P client device), and other service and/or configuration information. Because the first WiFi Direct device knows whether the second WiFi Direct device is a group owner or not, the first WiFi Direct device may take the appropriate connection to establish the WiFi Direct connection.
Abstract:
Methods, systems, and devices for wireless communications are described. Wireless stations (STAs) may be within the coverage areas of several of access points (APs). In such cases, STAs may detect some set of candidate APs for possible connection, and the STAs may perform some selection procedure to select an AP for connection. For example, a STA may score or rank available APs (e.g., APs within the set of candidate APs), and the STA may sort the candidate APs into different bins (e.g., categories) based on their respective scores (e.g., based on each AP's candidate score). Each bin may thus include one or more APs associated with some scoring range. A STA may then randomly (e.g., or pseudo-randomly) select an AP from the bin associated with a highest range of candidate scores, and the STA may connect to the selected AP.
Abstract:
Systems and methods are disclosed for wireless communication including transmitting a beacon comprising group traffic information indicating whether group traffic is buffered for transmission and multicast/broadcast (MB) information indicating a type of the buffered group traffic with a first node. The beacon may be received by a second node, allowing the type of the buffered group traffic to be determined from the MB information. Types of buffered group traffic include multicast data, broadcast data and both multicast and broadcast data. As desired, the second node may enter a power save mode of operation upon determining that the type of buffered group data is not currently of interest.
Abstract:
A method and apparatus to save power in a soft access point for a network. If no network traffic is detected for an integral number of TBTT (Target Beacon Transmission Time) intervals immediately prior to a current TBTT interval, and if no network traffic is detected for a first time slot in the current TBTT interval, then the soft access point sends a CTS (Clear-to-Send) packet addressed to itself to quiet the network for a second time slot and enters a low power mode for the second time slot. At the beginning of a third time slot, the soft access point puts itself into an active mode and monitors network traffic.