Abstract:
Certain aspects of the present invention provide methods and apparatus for synchronizing frequency-divided oscillating signals associated with multiple radio frequency (RF) paths to be in-phase. For certain aspects, a reset pulse is input to synchronization logic for a particular RF path, and this logic retimes the reset pulse to a local synthesizer clock in this RF path. The retimed reset pulse drives the reset input of a local frequency divider for this RF path and is also appropriately delayed, buffered, and then daisy-chained to the synchronization logic in the next RF path to be repeated therein. By appropriately resetting the local frequency dividers using the synchronization logic in this manner, the frequency-divided oscillating signals for the RF paths are synchronized to operate in-phase with one another.
Abstract:
Certain aspects of the present invention provide methods and apparatus for detecting phase shift between signals, such as local oscillating signals in adjacent transceiver paths. One example circuit for phase detection generally includes a mixer configured to mix a first input signal having a first frequency with a second input signal having a second frequency to produce an output signal having frequency components at the sum of and the difference between the first and second frequencies; a filter connected with the mixer and configured to remove one of the frequency components at the sum of the first and second frequencies, thereby leaving a DC component; and an analog-to-digital converter (ADC) (e.g., a comparator) connected with the filter and configured to determine whether the first input signal is in-phase or out-of-phase with the second input signal based on a comparison between the DC component and a reference signal.