Abstract:
In general, techniques are described for audio editing of higher-order ambisonic audio data. A device comprising a memory and one or more processors may be configured to perform the techniques. The memory may be configured to store a higher order ambisonic (HOA) representation of the audio object. The one or more processors may be configured to add a source tail to the HOA representation of the audio object by storing one or more spherical harmonic (SH) basis functions associated with the audio object to a buffer.
Abstract:
A method for encoding three dimensional audio by a wireless communication device is disclosed. The wireless communication device detects an indication of a plurality of localizable audio sources. The wireless communication device also records a plurality of audio signals associated with the plurality of localizable audio sources. The wireless communication device also encodes the plurality of audio signals.
Abstract:
Systems, methods, and apparatus for backward-compatible coding of a set of basis function coefficients that describe a sound field are presented.
Abstract:
A vehicle includes a positioning system configured to determine a position. The vehicle includes a memory configured to store information associated with one or more landmarks. The information includes an audio icon associated with a landmark, and the landmark is located at a landmark location. The vehicle includes a processor configured to retrieve the audio icon based on the position and to render an audio signal based on the audio icon into a three-dimensional audio space within the vehicle. The vehicle further includes two or more transducers configured to output a spatial auditory sound in the three-dimensional audio space based on the audio signal. The spatial auditory sound enables perception of the landmark location relative to a location within the vehicle.
Abstract:
In general, techniques are described for locating a user using an ultrasound mesh. The techniques may be performed by an interactive system comprising one or more processors. The processors may be configured to determine an amplitude of a first ultrasound signal emitted by one or more transducers and received by a microphone. This first ultrasound signal may be of a first frequency. The processors may then determine an amplitude of a second ultrasound signal emitted by the one or more transducers and received by the microphone. The second ultrasound signal may be of a second frequency different from the first frequency. The processors may be further configured to determine a location of the microphone relative to the one or more transducers based at least on the determined amplitude of the first ultrasound signal and the determined amplitude of the second ultrasound signal.
Abstract:
In general, techniques are described for image generation for a collaborative sound system. A headend device comprising a processor may perform these techniques. The processor may be configured to determine a location of a mobile device participating in a collaborative surround sound system as a speaker of a plurality of speakers of the collaborative surround sound system. The processor may further be configured to generate an image that depicts the location of the mobile device that is participating in the collaborative surround sound system relative to the plurality of other speakers of the collaborative surround sound system.
Abstract:
Systems, methods, and apparatus for backward-compatible coding of a set of basis function coefficients that describe a sound field are presented.
Abstract:
A user interface, methods and article of manufacture each for selecting an audio cue presented in three-dimensional (3D) space are disclosed. The audio cues are audibly perceivable in a space about a user, where each of the audio cues may be perceived by the user as a directional sound at a distinct location from other audio cues in the space. Selection of a specific audio cue is made based on one or more user gestures. A portable electronic device may be configured to present the audio cues perceived by a user and detect certain user gestures to select audio cues. The audio cue selection can be used to control operation of the portable device and/or other associated devices.
Abstract:
A device comprising one or more processors is configured to apply adaptively determined weights to a plurality of channels of the audio signal to generate a plurality of adaptively weighted channels of the audio signal. The processors are further configured to combine at least two of the plurality of adaptively weighted channels of the audio signal to generate a combined signal. The processors are further configured to apply a binaural room impulse response filter to the combined signal to generate a binaural audio signal.