Abstract:
An apparatus and method for generating parameters for an application, such as an augmented reality application (AR app), using camera pose and gyroscope rotation is disclosed. The parameters are estimated based on pose from images and rotation from a gyroscope (e.g., using least-squares estimation with QR factorization or a Kalman filter). The parameters indicate rotation, scale and/or non-orthogonality parameters and optionally gyroscope bias errors. In addition, the scale and non-orthogonality parameters may be used for conditioning raw gyroscope measurements to compensate for scale and non-orthogonality.
Abstract:
An apparatus and method for generating parameters for an application, such as an augmented reality application (AR app), using camera pose and gyroscope rotation is disclosed. The parameters are estimated based on pose from images and rotation from a gyroscope (e.g., using least-squares estimation with QR factorization or a Kalman filter). The parameters indicate rotation, scale and/or non-orthogonality parameters and optionally gyroscope bias errors. In addition, the scale and non-orthogonality parameters may be used for conditioning raw gyroscope measurements to compensate for scale and non-orthogonality.
Abstract:
A mobile platform efficiently processes image data, using distributed processing in which latency sensitive operations are performed on the mobile platform, while latency insensitive, but computationally intensive operations are performed on a remote server. The mobile platform acquires image data, and determines whether there is a trigger event to transmit the image data to the server. The trigger event may be a change in the image data relative to previously acquired image data, e.g., a scene change in an image. When a change is present, the image data may be transmitted to the server for processing. The server processes the image data and returns information related to the image data, such as identification of an object in an image or a reference image or model. The mobile platform may then perform reference based tracking using the identified object or reference image or model.
Abstract:
A mobile platform efficiently processes image data, using distributed processing in which latency sensitive operations are performed on the mobile platform, while latency insensitive, but computationally intensive operations are performed on a remote server. The mobile platform acquires image data, and determines whether there is a trigger event to transmit the image data to the server. The trigger event may be a change in the image data relative to previously acquired image data, e.g., a scene change in an image. When a change is present, the image data may be transmitted to the server for processing. The server processes the image data and returns information related to the image data, such as identification of an object in an image or a reference image or model. The mobile platform may then perform reference based tracking using the identified object or reference image or model.
Abstract:
A venue-cast system and method for providing and receiving venue level transmissions and services, including discovery of a venue specific transmission by receiving an overhead signal from a non-venue network, extracting information for receiving the venue specific transmission from the overhead signal, and tuning to receive the venue specific transmission based on the extracted information. The venue level transmission may be provided and received in a manner that does not prevent an access terminal from receiving a local area or wide area transmission.
Abstract:
A venue-cast system and method for providing and receiving venue level transmissions and services, including discovery of a venue specific transmission by receiving an overhead signal from a non-venue network, extracting information for receiving the venue specific transmission from the overhead signal, and tuning to receive the venue specific transmission based on the extracted information. The venue level transmission may be provided and received in a manner that does not prevent an access terminal from receiving a local area or wide area transmission.