Abstract:
Methods, devices, and systems are described for using multiple measurements including Doppler measurements from a mobile device to identify the position of the base station. Repeated Doppler and velocity measurements from different locations, with measurement groups taken at the same time or within a certain time frame, may be used to identify the location of a base station with which the mobile device is communicating.
Abstract:
Arrangements are detailed herein for determining a position and/or uncertainty of position of a mobile device. A plurality of positioning reference signals (PRSs) may be received by a mobile device. The plurality of PRSs may be transmitted at different times, separated by a predefined time interval, by multiple eNBs of a mobile network. Time of arrival values in relation to a received PRS that is used as a reference PRS may be determined. The time of arrival values for at least the subset of the received plurality of PRSs may be projected to the occasion of the reference PRS using the predefined time interval to create a set of projected time of arrival values.
Abstract:
A method for assisting a mobile device to perform positioning measurements on positioning signals periodically transmitted by at least some of a plurality of cells in a wireless communication network includes determining an estimated position of the mobile device and then determining a first set of candidate cells of the plurality of cells based on the estimated position of the mobile device. The method also includes estimating an expected interference of each respective positioning signal that is transmitted by each candidate cell of the first set and selecting a subset of cells from the first set of candidate cells based on the estimated expected interference. Assistance data identifying the selected subset of cells is then generated and sent to the mobile device.
Abstract:
Methods and apparatus are described for providing location assistance information to a mobile device. An example of a method for providing location assistance information to the mobile device by a femto base station includes receiving a macro base station signal during a monitoring time period during which the femto base station is substantially stationary, obtaining location assistance information, the location assistance information being based, at least in part, on the received macro base station signal, and transmitting the location assistance information to the mobile device.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses to determine time difference of arrival of signals from two base stations as received at a mobile device, to use the time difference of arrival to determine differential forward link calibration for at least two base stations, and also to determine location using the differential forward link calibration for at least two base stations, determined using the time difference of arrival of signals from at least two base stations as received by a mobile device.
Abstract:
Methods and systems are presented for providing a combined barometric value. In some embodiments, the method includes obtaining, at the serving fixed local transceiver, barometric values of a plurality of client fixed local transceivers, and determining a combined barometric correction value. The method further includes initiating a barometric correction value of the serving fixed local transceiver to the combined barometric correction value, and sending an indication of the barometric correction value to the plurality of client fixed local transceivers. The method further includes receiving a request for the serving fixed local transceiver barometric correction value from a target client fixed local transceiver, and sending the barometric correction value from the serving fixed local transceiver to the target client fixed local transceiver.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses to determine time difference of arrival of signals from two base stations as received at a mobile device, to use the time difference of arrival to determine differential forward link calibration for at least two base stations, and also to determine location using the differential forward link calibration for at least two base stations, determined using the time difference of arrival of signals from at least two base stations as received by a mobile device.
Abstract:
Techniques are provided which may be implemented within a mobile device for determining a likely motion state of the mobile device. In an example, a mobile device may obtain sets of measurement signals from an inertial sensor, determine corresponding measures of variation for each of the sets of measurement signals, determine flatness indications corresponding to sets of the measures of variation, determine a motion state threshold level based, at least in part, on one or more flatness indications; and determine a likely motion state of the mobile device based, at least in part, on the motion state threshold level and one or more of: (i) a subsequently determined measure of variation, and/or (ii) a subsequently determined flatness indication.
Abstract:
Methods, apparatuses, and devices for generating one or more harsh or diminished radiofrequency environments relative to a planned route of a mobile device user. In one example, a mobile device user a be routed through a harsh or diminished radiofrequency environment based, at least in part, on a sensor suite of a mobile device and/or based on a user's preferences. Prior to entry into such an environment, various sensors may be activated in a manner that permits position estimation in an absence of SPS based positioning signals and/or TPS based positioning signals.
Abstract:
Methods, apparatuses, and devices for processing Positioning Reference Signals (PRS) bursts are presented. In one example, a mobile device may acquire a first PRS burst transmitted from a base station through first transmitter antenna port and acquire a second PRS burst transmitted from a base station through a second antenna port. The mobile device may select between the first and second acquired PRS bursts for use in positioning operations such as observed time difference of arrival.