Abstract:
A method and apparatus for providing an alternative remote spent fuel pool cooling system for the spent fuel pool. The cooling system is operated to cool the spent fuel pool in the event of a plant accident when normal plant electricity is not available for the conventional fuel pool cooling and cleanup system, or when the integrity of the spent fuel has been jeopardized. The cooling system is operated and controlled from a remote location, which is ideal during a plant emergency.
Abstract:
An embodiment of the present invention takes the form of a system that may reduce the level of flow-induced vibration (FIV) experienced by a jet pump assembly or other similar object within a pressure vessel. Essentially, an embodiment of the present invention may reduce the slip-joint leakage, which may be a cause of the FIVs, by adding a flow-limiting component to an outlet of the slip joint. This component may take the form of a collar, channel, and/or other component that may be connectable to a component of the jet pump assembly. After installation, an embodiment of the present invention may lower the amplitude of, and/or change the frequency of, the FIVs experienced by the jet pump assembly.
Abstract:
A post-accident fission product removal system may include an air mover, a filter assembly, and/or an ionization chamber. The air mover may be configured to move contaminated air through the filter assembly to produce filtered air. The ionization chamber may be connected to the filter assembly. The ionization chamber may include an anode and a cathode. The ionization chamber may be configured to receive the filtered air from the filter assembly and to ionize and capture radioisotopes from the filtered air to produce clean air.
Abstract:
An embodiment of the present invention takes the form of a system that may reduce the level of flow-induced vibration (FIV) experienced by a jet pump assembly or other similar object within a pressure vessel. Essentially, an embodiment of the present invention may reduce the slip-joint leakage, which may be a cause of the FIVs, by adding a flow-limiting component to an outlet of the slip joint. This component may take the form of a collar, channel, and/or other component that may be connectable to a component of the jet pump assembly. After installation, an embodiment of the present invention may lower the amplitude of, and/or change the frequency of, the FIVs experienced by the jet pump assembly.
Abstract:
A post-accident fission product removal system may include an air mover, a filter assembly, and/or an ionization chamber. The air mover may be configured to move contaminated air through the filter assembly to produce filtered air. The ionization chamber may be connected to the filter assembly. The ionization chamber may include an anode and a cathode. The ionization chamber may be configured to receive the filtered air from the filter assembly and to ionize and capture radioisotopes from the filtered air to produce clean air.
Abstract:
A method and apparatus for providing an alternative remote spent fuel pool cooling system for the spent fuel pool. The cooling system is operated to cool the spent fuel pool in the event of a plant accident when normal plant electricity is not available for the conventional fuel pool cooling and cleanup system, or when the integrity of the spent fuel has been jeopardized. The cooling system is operated and controlled from a remote location, which is ideal during a plant emergency.
Abstract:
A method and apparatus for providing an alternative remote spent fuel pool cooling system for the spent fuel pool. The cooling system is operated to cool the spent fuel pool in the event of a plant accident when normal plant electricity is not available for the conventional fuel pool cooling and cleanup system, or when the integrity of the spent fuel has been jeopardized. The cooling system is operated and controlled from a remote location, which is ideal during a plant emergency.
Abstract:
A jet pump assembly according to an example embodiment of the present invention includes an inlet body arranged in proximity with a throat structure so as to provide an entrainment entrance between a discharge end of the inlet body and the throat structure. A drive flow of a motive fluid is supplied at a first velocity to the inlet body and is discharged through at least one nozzle at a higher second velocity, thereby creating a pressure drop in the throat structure. The pressure drop facilitates a first entrained flow of suction fluid into the entrainment entrance and a second entrained flow of suction fluid through at least one channel passing through the inlet body. The at least one channel is configured such that the second entrained flow is isolated from the drive flow while passing through the inlet body.
Abstract:
A jet pump assembly according to an example embodiment of the present invention includes an inlet body arranged in proximity with a throat structure so as to provide an entrainment entrance between a discharge end of the inlet body and the throat structure. A drive flow of a motive fluid is supplied at a first velocity to the inlet body and is discharged through at least one nozzle at a higher second velocity, thereby creating a pressure drop in the throat structure. The pressure drop facilitates a first entrained flow of suction fluid into the entrainment entrance and a second entrained flow of suction fluid through at least one channel passing through the inlet body. The at least one channel is configured such that the second entrained flow is isolated from the drive flow while passing through the inlet body.