Abstract:
A switch fabric includes input links, output links, and at least one switching element. The input links are configured to receive data items that include destination addresses. At least some of the data items have different priority levels. The output links are configured to output the data items. Each of the output links is assigned multiple ones of the destination addresses. Each of the destination addresses corresponds to one of the priority levels. The switching element(s) is/are configured to receive the data items from the input links and send the data items to ones of the output links without regard to the priority levels of the data items.
Abstract:
A switch fabric includes input links, output links, and at least one switching element. The input links are configured to receive data items that include destination addresses. At least some of the data items have different priority levels. The output links are configured to output the data items. Each of the output links is assigned multiple ones of the destination addresses. Each of the destination addresses corresponds to one of the priority levels. The switching element(s) is/are configured to receive the data items from the input links and send the data items to ones of the output links without regard to the priority levels of the data items.
Abstract:
A switch fabric includes input links, output links, and at least one switching element. The input links are configured to receive data items that include destination addresses. At least some of the data items have different priority levels. The output links are configured to output the data items. Each of the output links is assigned multiple ones of the destination addresses. Each of the destination addresses corresponds to one of the priority levels. The switching element(s) is/are configured to receive the data items from the input links and send the data items to ones of the output links without regard to the priority levels of the data items.
Abstract:
A switching device includes multiple interfaces and a switch fabric. The switch fabric includes switch integrated circuits arranged in a number of stages. Multiple virtual switch planes may be implemented in the switch fabric. Data traffic received at the interfaces is selectively assigned to different ones of the virtual switch planes.
Abstract:
A switch fabric includes input links, output links, and at least one switching element. The input links are configured to receive data items that include destination addresses. At least some of the data items have different priority levels. The output links are configured to output the data items. Each of the output links is assigned multiple ones of the destination addresses. Each of the destination addresses corresponds to one of the priority levels. The switching element(s) is/are configured to receive the data items from the input links and send the data items to ones of the output links without regard to the priority levels of the data items.
Abstract:
A switching device in a network system for transferring data includes one or more source line cards, one or more destination line cards and a switching fabric coupled to the source line cards and the destination line cards to enable data communication between any source line card and destination line card. Each source line card includes a request generator to generate a request signal to be transmitted in order to obtain an authorization to transmit data. Each destination line card includes a grant generator to generate and send back a grant signal to the source line card in response to the request signal received at the destination line card to authorize the source line card to transmit a data cell to the destination line card.
Abstract:
A high speed transmission system transfers data streams over a plurality of data links. Each data link may carry a number of bit streams. A clock signal is not transmitted over the optical link. Instead, an indication of the appropriate clock signal frequency and phase is embedded in the transmitted data. At the receiving end, a clock signal of an appropriate frequency and phase is generated. The new clock signal is used to sample and reconstruct the original data streams.
Abstract:
A system for identifying chronic performance problems on data networks includes network monitoring devices that provide measurements of performance metrics such as latency, jitter, and throughput, and a processing system for analyzing measurement data to identify the onset of chronic performance problems. Network behavior is analyzed to develop a baseline performance level (e.g., computing a mean and variance of a baseline sample of performance metric measurements). An operating performance level is measured during operation of the network (e.g., computing a mean and variance of an operating sample of performance metric measurements). A chronic performance problem is identified if the operating performance level exceeds a performance threshold and a difference between the baseline performance level and the operating performance level is determined to be statistically significant. A t-test based on the baseline mean and variance and the operating mean and variance can be used to determine if this difference is significant.
Abstract:
A system for measuring peak throughput in packetized data networks includes a remote monitoring probe and console. The probe is connected to a packetized data network to monitor network activity, while the console is in communication with the probe via a communications medium. The probe maintains a plurality of counters associated with different ranges of utilization percentage for access channel and individual circuit bandwidth. For each sampling interval, the probe measures the access channel and individual circuit bandwidth utilization and increments the appropriate counters associated with the percentage ranges encompassing the measured bandwidth utilizations. The console polls the probe for the percentage counter data to selectively display the access channel or individual circuit bandwidth utilization in the form of a bar graph and pie chart. The access channel and/or individual circuit bandwidth may ultimately be adjusted based on the displayed data. Alternatively, the system may analyze the data and determine conservative, moderate and aggressive recommendations for bandwidth adjustment. In addition, the system can generate reports containing the access channel or individual circuit bandwidth utilization for a user-specified time period, and the recommendations for bandwidth adjustment.
Abstract:
An apparatus and method are provided for analyzing traffic on a network by monitoring packets sent between devices on the network and identifying applications occurring between devices on the network based on information derived from monitoring the packets. Techniques are provided to examine header information of the packets, such as information in the header of Internet Protocol (IP) packets, to identify applications that are occurring on the network. In some cases, information about the packet beyond the header information is examined to match a packet to a particular application. Using these techniques, a list is built of all of the applications occurring between devices on the network. Parameters may be generated to track one or more of the response time, latency and traffic volume associated with a particular device on the network.