Abstract:
The invention relates to a process of activating a supported acid catalyst, and consists in the conversion of Lewis acid-type acid sites which are deposited on a solid substrate into activated acid sites in a non-oxydizing acid medium. The catalyst is exposed to a phase of activation in a medium containing a holohydric acid or a halohydric acid precursor, in the presence of at least one preferably parafinic hydrocarbon or hydrocarbon derivative, at a temperature greater than 20° and preferably between 100° C. and 250° C., and at a pressure of between 105 and 50,106 Pa, for a length of time sufficient to ensure conversion into activated acid sites.
Abstract:
An alkylation catalyst including a least one porous refractory metal oxide with at least one halogen on the surface thereof. The catalyst contains 0.005-1 wt % of at least one metal from groups IA and IIA of the periodic table of the elements and is particularly useful in an isobutane alkylation method using light olefins.
Abstract:
The invention relates to an acid catalyst containing a substantial quantity of supported or mass sulfated zirconia and at least one hydrogenating transition metal. This catalyst is characterized by the fact that the sulfated zirconia is in crystallized form and that it shows a specific surface area greater than or equal to 150 m2/g, a pore volume greater than or equal to 0.20 cm3/g and an average pore diameter greater than or equal to 20 Angstroms (20×10−10 m). The invention also relates to methods of making this catalyst and to the uses of this catalyst in hydrocarbon transformation chemical reactions requiring the use of an acid type catalyst, such as for example, isomerization, alkylation, oligomerization reactions or even light hydrocarbon dehydration reactions, and also heavier hydrocarbon hydrocracking and hydroisomerization reactions.
Abstract:
The invention relates to an acid catalyst containing a substantial quantity of supported or mass sulfated zirconia and at least one hydrogenating transition metal. This catalyst is characterized by the fact that the sulfated zirconia is in crystallized form and that it shows a specific surface area greater than or equal to 135 m2/g, a pore volume greater than or equal to 0.16 cm3/g and an average pore diameter greater than or equal to 20 Angstroms (20×10−10 m). The invention also relates to methods of making this catalyst and to the uses of this catalyst in hydrocarbon transformation chemical reactions requiring the use of an acid type catalyst, such as for example, isomerization, alkylation, oligomerization reactions or even light hydrocarbon dehydration reactions, and also heavier hydrocarbon hydrocracking and hydroisomerization reactions. In a preferred embodiment of the method of the present invention, a hydrated zirconia gel is washed with a soluble polar organic solvent (other than water). In accordance with the method including this washing step, a solid acid catalyst containing pure mass sulfated zirconia in a crystallized form has a surface area greater than or equal to 150 m2/g, a pore volume greater than or equal to 0.2 cm3/g, and more preferably greater than or equal to 0.25 cm3/g, and an average pore diameter greater than or equal to 20 Angstroms (20×10−10 m) and preferably greater than or equal to 30 Angstroms (30×10−10 m).
Abstract:
The invention relates to a process for the preparation and activation of a catalyst, comprising a stage of fabricating a support consisting at least in part of at least one refractory oxide mineral, a stage of depositing on the support at least one metal from the platinum group, and a stage intended for forming on the support at least two metal halides of the Lewis acid type. Between the deposition of the metal halides of the Lewis acid type and the utilization of the catalyst in the reactor, the catalyst is subjected to an activation stage by being maintained in an acidic and nonoxidizing or reducing medium at a temperature between 300.degree. and 475.degree. C. so that its final content of a promoter metal of the zirconium, molybdenum tungsten or titanium type ranges from 0.15 to 1 percent, based on the weight of the support.
Abstract:
These catalysts comprise: A refractory oxide-mineral carrier; a halogen element, present in combined form; and, in free or combined form,(a) a platinum-group metal, m1(b) tin,and additionally a metal, M1, from groups Ia and IIa of the periodic table of the elements in such an amount that: 0.2.ltoreq.M2/M1.ltoreq.10.Specifically, said metal from groups Ia and IIa may be sodium, lithium, potassium, calcium or barium.
Abstract:
A process of preparing a ferrierite-type zeolite, with high crystallinity rate and having a anhydrous stage composition expressed by the formula M.sub.x (AlO.sub.2).sub.x (SiO.sub.2).sub.y, M being a cation of an alkaline metal such as Na or K, or a mix of both. The process contains a gel-producing step, by addition of boric acid to an aqueous aluminum-sulfate solution mixed with a aqueous solution containing oxides of Na and/or K and of Si, without the use of a structural agent. The invention also pertains to any zeolite obtained by this process, and its uses.
Abstract:
The invention relates to a solid granular catalyst subject to degradation by exposure to humidity and/or oxygen, wherein each granule of the catalyst is coated with a continuous and removable protective film of a material that is impermeable to gases and moisture and inert to the constituents of the catalyst.
Abstract:
Catalysts for the isomerization of hydrocarbons, particularly normal paraffins having from 4 to 7 carbon atoms, as well as a process for the preparation of the catalyst and a process for their use in the isomerization of such hydrocarbons are disclosed.The catalysts are composed of a zeolite support impregnated with a mixture of zirconium, a refractory metallic oxide and at least one platinum-group metal.The process for the preparation of the catalysts involves steps of depositing the zirconium, on the zeolite support, mixing (zeolite+Zr) with alumina, and depositing a platinum group metal on the mixture (zeolite+Zr)/alumina, accompanied by intermediate calcining and shaping steps, and followed by drying and final calcining steps. Alternative methods for depositing the zirconium and platinum group metals on the zeolite are disclosed.
Abstract:
The invention relates to the preparation of the zeolite ZK-5 from a starting zeolite selected from the group consisting of the zeolites P (Cl), P' (Cl), Q (Br) and Q' (Br).In accordance with the invention, the barium ions contained in the starting zeolite are extracted therefrom by means of a barium-binding agent selected from the group consisting of precipitating agents which form with the barium ions a compound that precipitates, and of complexing agents which form with the barium ions a barium complex.The zeolite ZK-5 obtained may be used in the separation or cracking of hydrocarbons.