Abstract:
The invention describes methods for inhibiting angiogenesis in a tissue by administering an antagonist that specifically binds to a proteolyzed or denatured collagen type-IV with substantially greater affinity than to the native triple helical form of collagen type-IV. Methods utilizing such antagonists for therapeutic treatment of tumor growth, tumor metastasis or of restenosis also are described, as are methods to use such antagonists as diagnostic markers of angiogenesis in normal or diseased tissues both in vivo and ex vivo. The invention further describes methods for treating tumors using said antagonists in combination with radiation therapy and therapies comprising the antagonists and radiation treatment.
Abstract:
The invention describes methods for inhibiting angiogenesis in a tissue by administering an antagonist that specifically binds to a proteolyzed or denatured collagen type-IV with substantially greater affinity than to the native triple helical form of collagen type-IV. Methods utilizing such antagonists for therapeutic treatment of tumor growth, tumor metastasis or of restenosis also are described, as are methods to use such antagonists as diagnostic markers of angiogenesis in normal or diseased tissues both in vivo and ex vivo. The invention further describes methods for treating tumors using said antagonists in combination with radiation therapy and therapies comprising the antagonists and radiation treatment.
Abstract:
The invention describes methods for inhibiting angiogenesis in a tissue by administering an antagonist that specifically binds to a proteolyzed or denatured laminin with substantially greater affinity than to the native form of laminin. Methods utilizing such antagonists for therapeutic treatment of tumor growth, tumor metastasis or of restenosis also are described, as are methods to use such antagonists as diagnostic markers of angiogenesis in normal or diseased tissues both in vivo and ex vivo.
Abstract:
The invention describes methods for inhibiting angiogenesis in a tissue by administering an antagonist that specifically binds to a proteolyzed or denatured collagen type-IV with substantially greater affinity than to the native triple helical form of collagen type-IV. Methods utilizing such antagonists for therapeutic treatment of tumor growth, tumor metastasis or of restenosis also are described, as are methods to use such antagonists as diagnostic markers of angiogenesis in normal or diseased tissues both in vivo and ex vivo. The invention further describes methods for treating tumors using said antagonists in combination with radiation therapy and therapies comprising the antagonists and radiation treatment.
Abstract:
The invention describes methods for inhibiting angiogenesis in a tissue by administering an antagonist that specifically binds to a proteolyzed or denatured laminin with substantially greater affinity than to the native form of laminin. Methods utilizing such antagonists for therapeutic treatment of tumor growth, tumor metastasis or of restenosis also are described, as are methods to use such antagonists as diagnostic markers of angiogenesis in normal or diseased tissues both in vivo and ex vivo.
Abstract:
The invention provides methods for identifying genes and proteins modulated by an antagonist of αvβ3 that inhibits binding of αvβ3 to an ECM component. It additionally provides methods for using the products of the identified genes, or for using the identified proteins, for inhibiting angiogenesis, tumor metastasis, and other tumor developmental processes, including cell migration, cell adhesion, cell proliferation, and tumor growth and for treating angiogenesis-dependent conditions. The present invention also relates to antagonists of αvβ3, wherein binding of these antagonists to αvβ3 results in modulation of the expression of IGFBP-4 or TSP-1, and methods of using these antagonists for inhibiting angiogenesis, tumor metastasis, and other tumor development processes as well as for treating angiogenesis-dependent conditions.
Abstract:
The invention describes methods for inhibiting angiogenesis in a tissue by administering an antagonist that specifically binds to a proteolyzed or denatured collagen type-IV with substantially greater affinity than to the native triple helical form of collagen type-IV. Methods utilizing such antagonists for therapeutic treatment of tumor growth, tumor metastasis or of restenosis also are described, as are methods to use such antagonists as diagnostic markers of angiogenesis in normal or diseased tissues both in vivo and ex vivo. The invention further describes methods for treating tumors using said antagonists in combination with radiation therapy and therapies comprising the the antagonists and radiation treatment.
Abstract:
The invention provides methods for identifying genes and proteins modulated by an antagonist to a cryptic epitope of an ECM component that specifically binds to the ECM component. It additionally provides methods for using the products of the identified genes, or for using the identified proteins, for inhibiting angiogenesis, tumor metastasis, and other tumor developmental processes, including cell migration, cell adhesion, cell proliferation, and tumor growth and for treating angiogenesis-dependent conditions. The present invention also relates to antagonists of cryptic epitopes of ECM components, wherein binding of these antagonists to cryptic epitopes of ECM components results in modulation of the expression of IGFBP-4, TSP-1, Id-1, p27KIP or p21CIP, and methods of using these antagonists for inhibiting angiogenesis, tumor metastasis, and other tumor development processes as well as for treating angiogenesis-dependent conditions.
Abstract:
The invention provides compositions comprising IGFBP-4 and methods for inhibiting angiogenesis and tumor development processes, and for treating angiogenesis-dependent conditions, using an insulin growth factor binding protein, IGFBP-4.