Abstract:
In an example embodiment, there is disclosed an apparatus comprising a first interface configured to receive a packet from a client, a second interface configured to transmit the packet to a server, a third interface configured to communicate with at least one processing device, redirection module in communication with the first interface, the second interface and the third interface, and flow monitoring and state information module in communication with the first interface, the second interface, the third interface and the redirection module. Responsive to receipt of the packet on the first interface, the redirection module is operable to communicate with the flow monitoring and state information module whether state information exists for the packet, the state information comprising an address for a processing device. The redirection module is operable to route the packet to the processing device responsive to determining state information exists for the packet.
Abstract:
A method is provided in one example embodiment and includes receiving a plurality of packets and generating a data record that is based on information associated with the packets. The data record includes a synchronized time window field that defines a time boundary at which data aggregation associated with the data record is stopped, where the synchronized time window field remains constant as the data aggregation associated with the data record occurs. In other embodiments, the method includes creating a new cache entry for new packets arriving at a network element, where the new cache entry is created in response to a value of the synchronized time window field changing. The synchronized time window field can include a window size attribute that defines how long the synchronized time window remains unchanged.
Abstract:
A cyclonic comminuting device includes a set of shearing plates that is adaptable to any colloid mill for improved efficiency and effectiveness in the production of all commodities including, but not limited to, asphalt or bitumen modification, tar, plastics, polymers, cosmetic processing and foods processing. The set of shearing plates includes a set of concave cutting edges. The set of concave cutting edges is applied to radial teeth of a rotor plate and/or a stator plate of the set of shearing plates forming a cyclonic flow pattern of a commodity as the commodity is passed through the comminuting device. The resulting turbulence created by the intersecting concave cutting edges on the rotor plate and the stator plate increases the effective hydraulic shear generated by the rotor plate and the stator plate resulting in greater particle pulverization and resulting in higher quality emulsions with reduced cost of materials required for production.
Abstract:
An apparatus is provided in one example embodiment and includes a network element configured to receive a plurality of packets. The network element is configured to couple to a module, the module being configured to generate a data record that is based on information associated with the packets and capable of being interpreted according to a template in which multiple information elements can be positioned to create a hierarchical relationship within structured data. The structured data further includes references to the information elements. The network element further including an export module configured to export the data record to a next destination.
Abstract:
A cyclonic comminuting device includes a set of shearing plates that is adaptable to any colloid mill for improved efficiency and effectiveness in the production of all commodities including, but not limited to, asphalt or bitumen modification, tar, plastics, polymers, cosmetic processing and foods processing. The set of shearing plates includes a set of concave cutting edges. The set of concave cutting edges is applied to radial teeth of a rotor plate and/or a stator plate of the set of shearing plates forming a cyclonic flow pattern of a commodity as the commodity is passed through the comminuting device. The resulting turbulence created by the intersecting concave cutting edges on the rotor plate and the stator plate increases the effective hydraulic shear generated by the rotor plate and the stator plate resulting in greater particle pulverization and resulting in higher quality emulsions with reduced cost of materials required for production.
Abstract:
A method and system for resolving domain name system (DNS) queries in a multiprotocol communications network is disclosed. The disclosed method includes in one embodiment receiving a destination address from a DNS server utilizing a first protocol; and communicating with a network element associated with the destination address utilizing a second protocol. In another embodiment, the disclosed method includes maintaining a profile for the DNS server and selecting the DNS server from a plurality of DNS servers utilizing the profile. In yet another embodiment, the disclosed method includes requesting a first address from the DNS server, where the first address is formatted according to a primary protocol, detecting a request failure in response to the request, and requesting a second address from the DNS server, where the second address is formatted according to a secondary protocol, in response to detecting the request failure.
Abstract:
An apparatus is provided in one example embodiment and includes a network element configured to receive a plurality of packets. The network element is configured to couple to a module, the module being configured to generate a data record that is based on information associated with the packets and capable of being interpreted according to a template in which multiple information elements can be positioned to create a hierarchical relationship within structured data. The structured data further includes references to the information elements. The network element further including an export module configured to export the data record to a next destination.
Abstract:
In an example embodiment, there is disclosed an apparatus comprising a first interface configured to receive a packet from a client, a second interface configured to transmit the packet to a server, a third interface configured to communicate with at least one processing device, redirection module in communication with the first interface, the second interface and the third interface, and flow monitoring and state information module in communication with the first interface, the second interface, the third interface and the redirection module. Responsive to receipt of the packet on the first interface, the redirection module is operable to communicate with the flow monitoring and state information module whether state information exists for the packet, the state information comprising an address for a processing device. The redirection module is operable to route the packet to the processing device responsive to determining state information exists for the packet.
Abstract:
A method and system for network time protocol forwarding is disclosed. The disclosed method includes in one embodiment receiving time data from a server utilizing a first protocol and transmitting the time data to a client utilizing a second protocol. In another embodiment, the described method further includes receiving the time data from a network time protocol time server and transmitting the time data to a network time protocol time client. In yet another embodiment, the described method further includes receiving the time data from the network time protocol time server utilizing a first network-layer protocol and transmitting the time data to the network time protocol time client utilizing a second network-layer protocol.