摘要:
It is the object of the present invention to specify a light source with high efficiency and high eye safety at the same time.For this purpose, the active layer (10), the first cladding layer (14), the first waveguide layer (12), the second waveguide layer (16), and the second cladding layer (18) should be designed such that 0.01 μm≦dwL≦1.0 μm and Δn≧0.04, where dwL is the sum total of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10), and the layer thickness of the second waveguide layer (16) and Δn is a maximum of the refractive index difference between the first cladding layer (14) and the first waveguide layer (12) and the refractive index difference between the second waveguide layer (16) and the second cladding layer (18).
摘要:
A broad area laser, with high efficiency and small far-field divergence, has an active layer, a first contact and a second contact, each having a width larger than 10 μm. An anti-wave guiding layer, which is positioned laterally with respect to the active region, is enclosed between the first and second contacts, wherein a refractive index of the anti-wave guiding layer is larger than a minimum refractive index of cladding layers. A minimum distance between the anti-wave guiding layer and a projection of one of the contacts on the plane of the anti-wave guiding layer is between 0 and 100 μm.
摘要:
The present invention relates to a broad area laser with high efficiency and small far-field divergence, as well as high output power.According to the invention, the active layer (10), the first contact (22) and the second contact (24) each have a width (W) larger than 10 μm, and there is also an anti-wave guiding layer (20) which is positioned laterally in relation to the active region enclosed between the contacts (22, 24), wherein the refractive index of the anti-wave guiding layer (20) is larger than the minimum refractive index of the cladding layers (14, 18), and wherein the minimum distance (dx) between the anti-wave guiding layer (20) and a projection of one of the contacts (24) on the plane of the anti-wave guiding layer (20) lies between 0 and 100 μm.
摘要:
It is the object of the present invention to specify a light source with high efficiency and high eye safety at the same time.For this purpose, the active layer (10), the first cladding layer (14), the first waveguide layer (12), the second waveguide layer (16), and the second cladding layer (18) should be designed such that 0.01 μm≦dWL≦1.0 μm and Δn≧0.04, where dWL is the sum total of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10), and the layer thickness of the second waveguide layer (16) and Δn is a maximum of the refractive index difference between the first cladding layer (14) and the first waveguide layer (12) and the refractive index difference between the second waveguide layer (16) and the second cladding layer (18).
摘要:
A diode laser and a laser resonator for a diode laser are provided, which has high lateral beam quality at high power output, requires little adjustment effort and is inexpensive to produce. The laser resonator according to the invention comprises a gain section (GS), a first planar Bragg reflector (DBR1) and a second planar Bragg reflector (DBR2), wherein the gain section (GS) has a trapezoidal design and the first planar Bragg reflector (DBR1) is arranged on a first base side of the trapezoidal gain section (GS) and the second planar Bragg reflector (DBR2) is arranged on the opposing base side of the trapezoidal gain section (GS), wherein the width (D1) of the first planar Bragg reflector (DBR1) differs from the width (D2) of the second planar Bragg reflector (DBR2).
摘要:
A diode laser and a laser resonator for a diode laser are provided, which has high lateral beam quality at high power output, requires little adjustment effort and is inexpensive to produce. The laser resonator according to the invention comprises a gain section (GS), a first planar Bragg reflector (DBR1) and a second planar Bragg reflector (DBR2), wherein the gain section (GS) has a trapezoidal design and the first planar Bragg reflector (DBR1) is arranged on a first base side of the trapezoidal gain section (GS) and the second planar Bragg reflector (DBR2) is arranged on the opposing base side of the trapezoidal gain section (GS), wherein the width (D1) of the first planar Bragg reflector (DBR1) differs from the width (D2) of the second planar Bragg reflector (DBR2).
摘要:
A laser diode has a first n-conducting cladding layer, a first n-conducting waveguide layer arranged therein, an active layer is suitable for generating radiation arranged on the first waveguide layer, a second p-conducting waveguide layer, arranged on the active layer, and a second p-conducting cladding layer, arranged on the second waveguide layer the sum of the layer thickness of the first waveguide layer, the layer thickness of the active layer and the layer thickness of the second waveguide layer is greater than 1 μm and the layer thickness of the second waveguide layer is less than 150 nm. The maximum mode intensity of the fundamental mode is in a region outside the active layer, and the difference between the refractive index of the first waveguide layer and the refractive index of the first cladding layer is between 0.04 and 0.01.
摘要:
A laser diode has a first n-conducting cladding layer, a first n-conducting waveguide layer arranged therein, an active layer is suitable for generating radiation arranged on the first waveguide layer, a second p-conducting waveguide layer, arranged on the active layer, and a second p-conducting cladding layer, arranged on the second waveguide layer the sum of the layer thickness of the first waveguide layer, the layer thickness of the active layer and the layer thickness of the second waveguide layer is greater than 1 μm and the layer thickness of the second waveguide layer is less than 150 nm. The maximum mode intensity of the fundamental mode is in a region outside the active layer, and the difference between the refractive index of the first waveguide layer and the refractive index of the first cladding layer is between 0.04 and 0.01.
摘要:
A the vertical-cavity surface-emitting laser includes a stripe-shaped active medium (10) having an emission maximum at a first wavelength (λ1), wherein a first reflector (18) is arranged below the stripe-shaped active medium (10) and a second reflector (20) is arranged above the stripe-shaped active medium (10), with the first reflector (18) facing the second reflector (20), wherein the first reflector (18) and a second reflector (20) have a reflectivity maximum in the region of the first wavelength (λ1), wherein a third reflector (12) and a fourth reflector (13) are each arranged on a side above or next to the stripe-shaped active medium (10), wherein the third reflector (12) faces the fourth reflector (13), and wherein the third reflector (12) and the fourth reflector (13) have a reflectivity maximum in the region of a second wavelength (λ2), wherein the first wavelength (λ1) is greater than the second wavelength (λ2).
摘要:
A semiconductor laser has an antiresonant waveguide (10), which is formed by a layer sequence applied to a substrate (1). The layer sequence has outer waveguide regions (2, 8), reflection layers (3, 7), and a waveguide core (11) with an active layer (5). With this structure, semiconductor lasers with only slight vertical beam divergence and with a large beam cross section can be produced.