Abstract:
A method for adaptively controlling a fuel delivery injector in a fuel cell system, including determining a feed-forward bias for the fuel delivery injector, determining an injector flow set-point for the fuel delivery injector, monitoring stack current, determining a transient pressure correction for the stack and correcting the injector flow set-point.
Abstract:
A method for adaptively controlling a fuel delivery injector in a fuel cell system, including determining a feed-forward bias for the fuel delivery injector, determining an injector flow set-point for the fuel delivery injector, monitoring stack current, determining a transient pressure correction for the stack and correcting the injector flow set-point.
Abstract:
A fuel cell system that determines the phase transition from water to gas through a bleed/drain valve in a water separation device. The fuel cell system includes a fuel cell stack having an anode side and a cathode side. An injector injects hydrogen gas into the anode side of the fuel cell stack. The water separation device receives an anode exhaust gas from the anode side of the fuel cell stack, where the water separation device includes a water holding reservoir. A controller controls the injector and the bleed/drain valve and determines when the bleed/drain valve transitions from draining water to bleeding the anode exhaust gas by comparing the flow rate through the water separation device and the flow rate through the injector.
Abstract:
A method that employs a model based approach to determine a maximum anode pressure set-point based on existing airflow in the exhaust gas line. This approach maximizes anode flow channel velocity during bleed events while meeting the hydrogen emission constraint, which in turn increases the amount of water purged from the anode flow channels to increase stack stability.
Abstract:
A method that employs a model based approach to determine a maximum anode pressure set-point based on existing airflow in the exhaust gas line. This approach maximizes anode flow channel velocity during bleed events while meeting the hydrogen emission constraint, which in turn increases the amount of water purged from the anode flow channels to increase stack stability.
Abstract:
A fuel cell system including a fuel cell stack having a plurality of fuel cells, the fuel cell stack including an anode supply manifold and an anode exhaust manifold, a first valve in fluid communication with at least one of the anode supply manifold and the anode exhaust manifold, wherein the first valve includes an inlet for receiving a fluid flow and an outlet for exhausting a fluid, a sensor for measuring at least a fluid pressure at the inlet and the outlet of the first valve, wherein the sensor generates a sensor signal representing the pressure measurement, and a processor for receiving the sensor signal, analyzing the sensor signal, and determining a composition of a fluid in the fuel cell system based upon the analysis of the sensor signal.
Abstract:
A system and method for determining whether valves in a fuel cell system bleed manifold unit (BMU) are blocked with ice or have otherwise failed. The system opens a first bleed valve, closes a second bleed valve and opens an exhaust valve, and then reads a pressure signal to determine whether there is flow through a flow restriction to determine whether the first bleed valve or the exhaust valve is blocked. The system then closes the exhaust valve, leaves the first bleed valve open, and again reads the pressure signal to determine the pressure drop across the flow restriction, which will indicate whether the flow restriction the pressure sensor lines are blocked. The system then closes the first bleed valve and opens the second bleed valve to determine whether the pressure signal indicates a flow through the second bleed valve.
Abstract:
A system and method for preventing low performing cells in a fuel cell stack. The method includes periodically providing a pulse of the cathode input airflow at low stack current densities, and comparing the current density output of each cell in response to the pulse. Those cells that do not have significant water accumulation will provide one voltage signature and those cells that do have a significant water accumulation will provide another voltage signature. If one or more of the cells exhibit the voltage signature for water accumulation, then the cathode inlet airflow pulses can be provided more often to prevent the cells from failing.
Abstract:
A method including shutting down an electrochemical fuel cell stack wherein anode pressure is controlled according to a stack discharge fuel consumption estimate.
Abstract:
A fuel cell system that determines the phase transition from water to gas through a bleed/drain valve in a water separation device. The fuel cell system includes a fuel cell stack having an anode side and a cathode side. An injector injects hydrogen gas into the anode side of the fuel cell stack. The water separation device receives an anode exhaust gas from the anode side of the fuel cell stack, where the water separation device includes a water holding reservoir. A controller controls the injector and the bleed/drain valve and determines when the bleed/drain valve transitions from draining water to bleeding the anode exhaust gas by comparing the flow rate through the water separation device and the flow rate through the injector.