Abstract:
A light-emitting device includes a board; and a first light-emitting element array and a second light-emitting element array connected in parallel and each including light-emitting elements mounted on the board and connected in series. The light-emitting elements includes a red LED chip and a blue LED chip. The red LED chip is sealed with a dot of a first sealant, and the blue LED chip is sealed with a dot of a second sealant which is different from the first sealant.
Abstract:
A light emitting device that emits white light includes first and second light emitting elements which have different emission peak wavelengths within a range of 440 nm to 495 nm. The device also includes a wavelength conversion material which converts a wavelength of light emitted by at least one of the first and second light emitting elements. The white light has an emission spectrum peaked at a first peak wavelength and a second peak wavelength. The first peak wavelength corresponds to the emission peak wavelength of the first light emitting element, and the second peak wavelength corresponds to the emission peak wavelength of the second light emitting element. Where a light intensity at one of the first peak wavelength and the second peak wavelength is 1, a light intensity at a bottom of a valley between the first and second peak wavelengths is 0.5 or higher but lower than 1.0.
Abstract:
A lighting apparatus includes an LED chip that emits primary light, and phosphor particles that emit secondary light by being excited with the primary light. The lighting apparatus emits light including the primary light and the secondary light. The light has an emission spectrum having a first peak in a wavelength ranging from 420 nm to 460 nm, a second peak in the wavelength ranging from 530 nm to 580 nm, a third peak in the wavelength ranging from 605 nm to 655 nm, a first trough in the wavelength ranging from 440 nm to 480 nm, and a second trough in the wavelength ranging from 555 nm to 605 nm.
Abstract:
An illumination system includes: a light-emitting module including a blue LED light source that emits blue light having a light emission peak in a blue range of from 400 nm to 470 nm and a red LED light source that emits red light having a light emission peak in a red range of from 610 nm to 680 nm; a light regulator that controls a first light intensity, which is light intensity at the light emission peak in the blue range, and a second light intensity, which is light intensity at the light emission peak in the red range, in a light emission spectrum of light emitted by the light-emitting module; and a clock that measures a time. The light regulator causes the second light intensity to change in conjunction with a change in the first light intensity, in accordance with the time measured by the clock.
Abstract:
A light-emitting apparatus includes: a substrate; a plurality of LED chips disposed on the substrate and including a plurality of blue LED chips which emit blue light and a plurality of red LED chips which emit red light; and a sealing member that contains a yellow phosphor and seals the plurality of LED chips together. The plurality of LED chips include: a first LED chip group made up of the blue LED chips; a second LED chip group made up of the red LED chips and disposed around the first LED chip group in an annular shape centered on an optical axis; and a third LED chip group made up of the blue LED chips and disposed around the second LED chip group in an annular shape centered on the optical axis.
Abstract:
A liquid crystal lens includes a first transparent substrate, a second transparent substrate, a liquid crystal layer disposed between the first transparent substrate and the second transparent substrate, a first transparent electrode disposed between the first transparent substrate and the liquid crystal layer and second transparent electrodes disposed between the second transparent substrate and the liquid crystal layer and facing the first transparent electrode. At least one second transparent electrode of the second transparent electrodes is disposed in each of divided regions into which a surface region, facing the first transparent substrate, of the second transparent substrate is divided.
Abstract:
Light emitting apparatus includes: substrate; red LED chip on substrate; blue LED chip on substrate, blue LED chip being connected in series with red LED chip and having an emission color different from red LED chip; and second sealing member that includes green phosphor and yellow phosphor and seals at least blue LED chip, and light-emission by red LED chip, blue LED chip, green phosphor, and yellow phosphor produces white light.
Abstract:
A light emitting device includes: a substrate; a first light emitting element and a second light emitting element that are mounted above the substrate; and a heat transfer pattern that is formed on the substrate. A rate of decrease in light output with respect to a temperature increase is greater for the second light emitting element than for the first light emitting element. The second light emitting element is mounted above the substrate via the heat transfer pattern, and the first light emitting element is mounted above the substrate without the heat transfer pattern
Abstract:
A light-emitting device includes blue LED chips having a light emission peak wavelength of at least 430 nm and at most 470 nm and red LED chips having a light emission peak wavelength of at least 600 nm and at most 640 nm. The light-emitting device includes a yellow phosphor having a light emission peak wavelength of at least 500 nm and at most 580 nm and a red phosphor having a light emission peak wavelength of at least 640 nm and at most 670 nm. The light-emitting device emits white light through mixing of light emitted by each of the blue LED chips, the red LED chips, the yellow phosphor, and the red phosphor.
Abstract:
A light-emitting device includes a substrate and a plurality of light-emitting elements disposed above the substrate. In the plurality of light-emitting elements, a first light-emitting element and a second light-emitting element different in a rate of decrease in light output along with a temperature increase are included. The plurality of light-emitting elements include: a first serial element group including some light-emitting elements connected in series among the plurality of light-emitting elements; and a second serial element group connected in parallel with the first serial element group and including some light-emitting elements connected in series among the plurality of light-emitting elements. A ratio between a total number of first light-emitting elements and a total number of second light-emitting elements is different between the first serial element group and the second serial element group.