Abstract:
An illuminator includes: a light-emitting element and a light-extraction layer which transmits light occurring from the light-emitting element. The light-emitting element includes a first electrode layer on the light-extraction layer side, the first electrode layer having a light transmitting property; a second electrode layer on the opposite side from the light-extraction layer; an emission layer between the first and the second electrode layers; and a feed portion disposed close to the first electrode layer, the second electrode layer, and the emission layer to apply a voltage between the first electrode layer and the second electrode layer. The light-extraction layer has a structure in which a low-refractive index layer having a relatively low refractive index and a high-refractive index layer having a higher refractive index than does the low-refractive index layer are stacked, an interface between the low-refractive index layer and the high-refractive index layer representing bump-dent features.
Abstract:
The present disclosure relates to an organic electroluminescence element including: a substrate having a light transmissive property; a light diffusion layer; a light transmissive electrode; a light reflective electrode; and a light emitting layer. With regard to the first light emitting layer being the first closest light emitting layer to the light reflective electrode, the relation defined by following expression (2) is satisfied, [ FORMULA 1 ] φ ( λ m ) × λ m 4 π + l + 0.1 2 λ m ≤ n m ( λ m ) × d m ≤ φ ( λ m ) × λ m 4 π + l + 0.5 2 λ m ( 2 ) wherein, λm represents the weighted average emission wavelength, Ø(λm) represents the phase shift, nm(λm) represents the average refractive index of a medium filling a space between the light reflective electrode and the first light emitting layer, and dm represents the distance from the light reflective electrode to the first light emitting layer. m is equal to 1.1 is an integer equal to or more than 0.
Abstract:
An optical system includes a first expansion region that expands a luminous flux traveling in a first direction by splitting and duplicating it into luminous fluxes traveling in a second direction intersecting the first direction to increase the number of luminous fluxes, and a second expansion region that expands the luminous fluxes traveling in the second direction by splitting and duplicating them to increase the number of luminous fluxes. The first expansion region has a central region that contains a center of the first expansion region, and an end region that lies on at least one end side of the first expansion region. The end region has a diffracted light quantity less than half the diffracted light quantity in the central region.
Abstract:
An optical scanning system including an optical scanning device, and a photoreceiver device. The optical scanning device includes: a first waveguide array including a plurality of first waveguides; and a first phase shifter for adjusting phases of light propagating through the plurality of first waveguides to change an emission direction of emission light from the plurality of first waveguides. The photoreceiver device includes: a second waveguide array including a plurality of second waveguides configured to receive reflected light and propagate the received reflected light; and a second phase shifter for adjusting phases of the received reflected light propagating through the plurality of second waveguides to change a reception direction of the reflected light received by the plurality of second waveguides. An array pitch of the plurality of first waveguides in the optical scanning device differs from an array pitch of the plurality of second waveguides in the photoreceiver device.
Abstract:
An optical scanning device includes a waveguide array including a plurality of waveguides arranged in a first direction. Each waveguide includes: an optical waveguide layer that propagates light supplied to the waveguide in a second direction intersecting the first direction; a first mirror having a first reflecting surface intersecting a third direction; and a second mirror having a second reflecting surface that faces the first reflecting surface. The optical waveguide layer is located between the first and second mirrors and has a variable thickness and/or a variable refractive index for the light. The width of the first mirror and the width of the second mirror are each larger than the width of the optical waveguide layer. The first mirror has a higher light transmittance than the second mirror and allows part of the light propagating through the optical waveguide layer to be emitted in the third direction.
Abstract:
This organic electroluminescent element includes: a light transmissive substrate; a light emitting stack including a first electrode, a light emitting layer, and a second electrode; and at least one light-outcoupling structure which has an uneven structure. The light emitting layer has a birefringence property with a higher refractive index in a direction parallel to a surface of the light transmissive substrate than a refractive index in a direction perpendicular to the surface of the light transmissive substrate. The uneven structure includes a plurality of protrusions which are individually allocated to some of planar matrix-like sections, and with regard to unit regions consisting of same number of sections of the planar matrix-like sections, a ratio of an area of one or more of the plurality of protrusions in a unit region is substantially constant in each unit region.
Abstract:
An illuminator includes a light-emitting element and a light extraction sheet which transmits light occurring from the light-emitting element. The light-emitting element includes a first electrode having a light transmitting property, a second electrode, and an emission layer between the first and second electrodes. The light extraction sheet includes a light-transmitting substrate having a first face and a second face, a first light extraction structure on the first face side of the light-transmitting substrate, and a second light extraction structure on the second face side of the light-transmitting substrate. The first light extraction structure includes a low-refractive index layer and a high-refractive index layer having a higher refractive index than the low-refractive index layer. The second light extraction structure is arranged so that light which is transmitted through the light-transmitting substrate and arrives at an incident angle of 60 to 80 degrees has an average transmittance of 20% or more.
Abstract:
The optical system includes a light guide including a reproduction region including a dividing diffraction structure dividing an image light ray propagating in a first propagation direction intersecting a thickness direction of a body, into image light rays propagating in a second propagation direction intersecting the first propagation direction, in the first propagation direction and including first and second diffraction structure regions formed respectively at first and second surfaces in the thickness direction to face each other, and an exit diffraction structure allowing the image light rays propagating in the second propagation direction to travel toward a field of view region. When first and second field of view angles in first and second directions of the virtual image are denoted by FOV1 and FOV2, a relation of FOV2/FOV1
Abstract:
The optical system includes: a light guide for guiding an image light ray to a field of view region of a user as a virtual image. The light guide includes a diffraction structure region constituting a surface-relief diffraction grating dividing the image light ray propagating in a first propagation direction intersecting a thickness direction of a body into a plurality of image light rays propagating in a second propagation direction intersecting the first propagation direction, in the first propagation direction. The diffraction structure region includes a first diffraction structure, and a second diffraction structure on an opposite side of the first diffraction structure from an in-coupling region in the first propagation direction. A grating height of the first diffraction structure is greater than a grating height of the second diffraction structure. A grating width of the first diffraction structure is greater than a grating width of the second diffraction structure.
Abstract:
An optical scanning device including: a first mirror having a first reflecting surface; a second mirror having a second reflecting surface; two non-waveguide regions disposed between the first and second mirrors and that are spaced apart from each other in a first direction parallel to at least either the first reflecting surface or the second reflecting surface; and an optical waveguide region disposed between the first and second mirrors and that is sandwiched between the two non-waveguide regions. The optical waveguide region propagates light in a second direction that crosses the first direction. The optical waveguide region and the two non-waveguide regions include respective first regions in which a common material exists. The optical waveguide region or each of the two non-waveguide regions further includes a second region in which a first material having a refractive index different from the refractive index of the common material exists.