Abstract:
There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
Abstract:
A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
Abstract:
An exposure adjusting apparatus, which comprises: an image sensor, for catching an image according to an exposure parameter; a computing apparatus, for computing an exposure amount of the image and for determining whether the exposure amount is in a predetermined exposure range or not; and an exposure updating apparatus. If the exposure amount is in the predetermined exposure range, the exposure updating apparatus does not adjust the exposure amount. If the exposure amount is not in the predetermined exposure range, the exposure updating apparatus generates at least one adjusting amount according to at least one of the predetermined exposure range, the exposure amount and the exposure parameter, and utilizes the adjusting amount to increase or decrease the exposure parameter to generate a new exposure parameter.
Abstract:
An image capturing apparatus comprising: a light source, for transmitting incident light to an objective without utilizing any medium besides air, such that the light emits from the objective to generate passing-through light; and a sensor, for capturing an image of the objective according to the passing-through light.
Abstract:
A power-saving sensing module includes a light source, a first and a second sensor, a first and a second detection unit, and a controller. The first sensor detects a touch of an external object to generate a first sensing signal corresponding to the touch. The first detection unit generates a touch signal corresponding to the first sensing signal.The second sensor senses a second sensing signal corresponding to the external object in response to the light ray. When the touch signal is greater than a touch threshold value, the second detection unit outputs a displacement signal corresponding to the second sensing signal. The controller outputs a control signal in response to the touch signal of the first detection unit and the touch threshold value, so that the second detection unit operates at a dormant state or a sensing state in response to the control signal.
Abstract:
There is provided an auto detection system including a thermal detection device and a host. The host controls an indication device to indicate a prompt message or detection results according to a slope variation of voltage values or 2D distribution of temperature values detected by the thermal detection device, wherein the voltage values include the detected voltage of a single pixel or the sum of detected voltages of multiple pixels of a thermal sensor.
Abstract:
A physiological detection system including an image sensor, a converting unit, a retrieving unit and a processing unit is provided. The image sensor includes a plurality of pixels respectively configured to output a PPG signal. The converting unit is configured to convert a plurality of PPG signals of a plurality of pixels regions to a plurality of frequency domain signals. The retrieving unit is configured to respectively retrieve a spectral energy of the frequency domain signals corresponding to each of the pixel regions. The processing unit is configured to construct a 3D energy distribution according to the spectral energies.
Abstract:
An object position determining system comprising: at least one light source, configured to emit light; at least one optical sensor, configured to sense optical data generated based on reflected light of the light; and a processing circuit, configured to compute distance information between the optical sensor and an object which generates the reflected light. The processing circuit further determines a position of the object according to the distance information.
Abstract:
An object position determining system comprising: at least one light source, configured to emit light; at least one optical sensor, configured to sense optical data generated based on reflected light of the light; and a processing circuit, configured to compute distance information between the optical sensor and an object which generates the reflected light. The processing circuit further determines a position of the object according to the distance information.
Abstract:
There is provided an image sensor employing an avalanche diode. The image sensor includes a plurality of pixel circuits arranged in a matrix, a plurality of pulling circuits, a plurality of output circuits and a global current source circuit. Each of the plurality of pixel circuits includes a single photon avalanche diode and a P-type or N-type select switch transistor. Each of the plurality of pulling circuits is arranged corresponding to one pixel circuit column. The global current source circuit is used to form a current mirror with each of the plurality of pulling circuits. Each of the plurality of output circuits is shared by at least two pixel circuits.