Abstract:
A coil for a non-contact power transmission system according to the present disclosure is used in a non-contact power transmission system to transmit electric power via a non-contact method. The coil includes a first coil in which a wire is wound around at a center of a core; and a second coil placed at an end of the core, and wound with the wire. Winding axes of the first and second coils are oriented in different directions.
Abstract:
The present disclosure provides a non-contact charging apparatus including a power transmitting coil and a power receiving coil which face each other. At least one of the power transmitting coil or the power receiving coil includes a magnetic body and a coil wound around the magnetic body. The magnetic body has, on both end portions, exposed regions in which the wound coil is absent. One of the exposed regions that is on a face facing the power transmitting coil or the power receiving coil is larger than another one of the exposed regions that is on a face not facing the power transmitting coil or the power receiving coil.
Abstract:
A non-contact charger aims to control transmitted power efficiently. The non-contact charger includes a transmitting coil, an inverter circuit, a receiving coil, and a transmitted power control circuit. The inverter circuit outputs the transmitted power to the transmitting coil. The receiving coil receives power as received power from the transmitting coil. The transmitted power control circuit drives the inverter circuit at a frequency higher than maximum received power frequencies at which the received power has one or two maximum values.
Abstract:
A microwave heating apparatus includes: a heating chamber which houses a heating object; a microwave generating unit which generates a microwave; a transmitting unit which transmits the microwave generated by the microwave generating unit; a waveguide-structure antenna which radiates to the heating chamber the microwave transmitted from the transmitting unit; and a rotation driving unit which drives the waveguide-structure antenna to rotate, wherein the waveguide-structure antenna has a microwave sucking-out opening in a wall surface forming a waveguide structure of the waveguide-structure antenna.
Abstract:
A non-contact power transmission system according to the present disclosure includes a power transmitting coil and a power receiving coil facing the power transmitting coil. At least one of the power transmitting coil and the power receiving coil includes a first coil in which a wire is wound around a first core, and a second coil in which a wire is wound around a second core. The second coil is placed at at least one end of a winding axis of the first coil. A winding axis of the second coil is inclined with respect to the winding axis of the first coil toward the power transmitting or receiving coil that faces the second coil.
Abstract:
A common mode noise filter includes: a laminated body; and a first and second coil conductors that are formed inside the laminated body and face each other in a first direction, wherein the first coil conductor has a first surface facing the second coil conductor; the second coil conductor has a second surface facing the first surface; a distance between ends of the first and second surfaces in the first direction is longer than a distance between centers of the first and second surfaces in the first direction; the first and second surfaces have corners each formed into an arcuate shape in a cross section; and a relationship between a height h in the first direction and a width w in a second direction perpendicular to the first direction is h≧w in a cross section of each of the first and second coil conductors.
Abstract:
A non-contact power transmission system according to the present disclosure transmits electric power from a power transmitting coil to a power receiving coil via a non-contact method by utilizing electromagnetic induction. At least one of the power transmitting coil and the power receiving coil includes first and second coils. A wire is wound around the first coil. The second coil is placed at at least one end of the winding axis of the first coil. Another the wire is wound around the second coil. The second coil is arranged such that magnetic fluxes generated along respective winding axes of the first and second coils are oriented in opposite directions.
Abstract:
Disclosed is a noncontact power transmission system including a power transmission device for transmitting power to a power receiving device in a noncontact manner. The power transmission device includes a cover covering a portion of an outline of the power transmission device where the power transmission device faces the power receiving device, a base covering another portion of the outline of the power transmission device where the power transmission device does not face the power receiving device, a magnetic body arranged in a space enclosed with the cover and the base, a coil bobbin covering the magnetic body partially or entirely, and a coil wire which is wound around the coil bobbin and which generates a magnetic flux upon receiving an alternating current. The coil bobbin includes a load support.
Abstract:
A common mode noise filter includes a first coil and a second coil. The first coil is formed in a plurality of insulating layers and includes a spiral first coil conductor and a spiral second coil conductor. The second coil is formed in the plurality of insulating layers and includes a spiral third coil conductor and a spiral fourth coil conductor. The first and third coil conductors are magnetically coupled to form a first common mode filter unit, and the second and fourth coil conductors are magnetically coupled to form a second common mode filter unit. As viewed from above, a first direction in which currents flow through the first and third coil conductors in the first common mode filter unit is opposite to a second direction in which currents flow through the second and fourth coil conductors in the second common mode filter unit.
Abstract:
The purpose of the present invention is to provide a contactless charging device which reduces magnetic field leaking from an air gap between a primary coil and a secondary coil so as to suppress radiation noise in contactless electrical power transmission. The device is provided with a power supply device (1) comprising a primary coil (13) which generates a magnetic field by way of a supply current from a power supply (2), and a power receiving device (8) comprising a secondary coil (15) which receives power by way of the magnetic field from the primary coil (13). The primary coil (13) and the secondary coil (15) are formed by winding coil wires, and the number of turns of the secondary coil (15) is set to be greater than the number of turns of the primary coil (13).