Abstract:
The disclosure relates to a method (30) performed in second network node (71, . . . , 7n) of a communication system (1, 1′) adapted for wireless communication and comprising a first network node (31, 32) adapted to operate in a mode of operation according to a first communication standard and a user device (10) adapted to operate according to the first communication standard. The second network node (71, . . . , 7n) is adapted to operate in a mode of operation according to a second communication standard, and adapted to receive uplink signaling in accordance with the first communication standard. The method (30) comprises receiving (31) an access request from the user device (10) in accordance with the first communication standard, and enabling (32) a communication channel for the user device (10) by relaying the received access request to the first network node (31, 32) or by switching from the mode of operation according to the second communication standard, to a mode of operation according to the first communication standard.
Abstract:
The disclosure relates to a network node 21, 2n; 31, 3n of a communication system 1 for wireless communication. The network node 21, 2n; 31, 3n is configured to utilize a first bandwidth, B1, allocated in accordance with a first communication standard, wherein a first carrier and a second carrier are allocated within the first bandwidth B1. The first carrier has a first bandwidth, Blegacy, and is configured to operate in accordance with a transmission format of the first communication standard, and the second carrier has a second bandwidth, Bnon-lebacy, and is configured to operate in accordance with a transmission format of a second communication standard.
Abstract:
The disclosure relates to a network node 21,, 2n; 31,, 3n of a communication system 1 for wireless communication. The network node 21,, 2n; 31,, 3n is configured to utilize a first bandwidth, B1, allocated in accordance with a first communication standard, wherein a first carrier and a second carrier are allocated within the first bandwidth B1. The first carrier has a first bandwidth, and is configured to operate in accordance with a transmission format of the first communication standard, and the second carrier has a second bandwidth, Bnon-lebacy, and is configured to operate in accordance with a transmission format of a second communication standard.
Abstract:
An apparatus (20) is associated with a telecommunications node (N) which serves a service area (S) which belongs to one set of plural sets of service areas comprising a network. The apparatus (20) divides a time resource for the node into plural phases in coordinated manner with other service areas. The apparatus (20) further generates a schedule for transmission/reception of user traffic for wireless terminals served by the node for plural consecutive phases. The schedule is generated so that during the plural consecutive phases the node can transmit and receive scheduled user traffic before receiving in the plural consecutive phases scheduling information from another node which serves another set of service areas.
Abstract:
The scheduling flexibility of CSI reference signals enables time and frequency synchronization using multiple non-zero CSI-RSs transmitted in the same subframe, or using CSI-RSs transmitted in the same subframe with other synchronization signals. Also, multiple synchronization signals may be scheduled in the same subframe to enable fine time and frequency synchronization without cell-specific reference signals.
Abstract:
Transmitted signals are modified to facilitate the emulation of circular convolution in non-contiguous transmission environments. These modified signals may be derived from well-known signature sequences. In an exemplary method, a tail portion of a final segment of a base signal is prefixed to an initial segment of the base signal, to form a first transmit segment. One or more additional transmit segments are formed by prefixing, to each of the one or more segments of the base signal other than the initial segment, a tail portion of the immediately preceding segment of the base signal. The transmit segments so formed are transmitted in respective ones of the plurality of non-contiguous transmit-time intervals. Corresponding methods for receiving the transmitted segments and reconstructing the base signal are also described, as are corresponding transmitting and receiving apparatuses.
Abstract:
Transmitted signals are modified to facilitate the emulation of circular convolution in non-contiguous transmission environments. These modified signals may be derived from well-known signature sequences. In an exemplary method, a tail portion of a final segment of a base signal is prefixed to an initial segment of the base signal, to form a first transmit segment. One or more additional transmit segments are formed by prefixing, to each of the one or more segments of the base signal other than the initial segment, a tail portion of the immediately preceding segment of the base signal. The transmit segments so formed are transmitted in respective ones of the plurality of non-contiguous transmit-time intervals. Corresponding methods for receiving the transmitted segments and reconstructing the base signal are also described, as are corresponding transmitting and receiving apparatuses.
Abstract:
A multi-pilot frame handler (36) of a radio access network node (28) is arranged to prepare a block of a frame of information to include a first pilot signal of a pilot signal first type and a first pilot signal of a pilot signal second type. The pilot signal of the pilot signal first type is expressed as a first Costas array base pattern of resource elements of the block; the pilot signal of the second type is expressed as a second Costas array base pattern of resource elements of the block. The multi-pilot frame handler (36) is arranged to prepare the block so that any pilot signal of the pilot signal first type is carried by at least some subcarriers of a first set of subcarriers of the block and any pilot signal of the pilot signal second type is carried by at least some subcarriers of a second set of subcarriers of the block.
Abstract:
Smaller patterns of regularly-spaced pilot symbols are discerned from a larger pattern of irregularly-spaced pilot symbols transmitted in the time-frequency domain. Accordingly, the irregularly-spaced pilot symbols can be partitioned into at least two different groups of regularly-spaced pilot symbols in the time-frequency domain. Each group of regularly-spaced pilot symbols is individually processed with lower complexity and the results combined to generate an accurate time-frequency channel response estimate. According to an embodiment, a set of irregularly-spaced pilot symbols is transmitted over a time-frequency window. Channel response is estimated based on the pilot symbols by grouping the pilot symbols into subsets of regularly-spaced pilot symbols. An intermediate quantity is generated for each subset of regularly-spaced pilot symbols as a function of the pilot symbols included in the subset. The channel response is estimated over the time-frequency window as a function of the intermediate quantities.
Abstract:
According to methods and apparatus taught herein, an Orthogonal Frequency Division Multiplexed (OFDM) transmitter increases pilot density in the edge regions of an OFDM signal, such as by using additional pilot sub carriers in the edge regions. For example, the OFDM signal includes first pilot sub carriers uniformly distributed across the frequency band of the OFDM signal, and second pilot sub carriers distributed within the edge regions. A corresponding OFDM receiver circuit uses the increased pilot density to improve channel estimation. For example, the receiver circuit uses the first pilot sub carriers in a Maximum Likelihood (ML) estimation process to obtain first channel estimates, and uses the results of ML estimation along with the second pilot sub carriers in a Minimum Mean Square Error (MMSE) estimation process to obtain second channel estimates. The receiver forms the improved channel estimates using the first and second channel estimates.