Abstract:
There is provided a compound semiconductor wafer that is suitably used as a semiconductor wafer to form a plurality of different types of devices such as an HBT and an FET thereon. The semiconductor wafer includes a first semiconductor, a carrier-trapping layer that is formed on the first semiconductor and has an electron-trapping center or a hole-trapping center, a second semiconductor that is epitaxially grown on the carrier-trapping layer and serves as a channel in which a free electron or a free hole moves, and a third semiconductor including a stack represented by n-type semiconductor/p-type semiconductor/n-type semiconductor or represented by p-type semiconductor/n-type semiconductor/p-type semiconductor, where the stack epitaxially grown on the second semiconductor.
Abstract:
There is provided a decorated sheet having a good adhesiveness with a molding resin regardless of a pattern of a colored part. A decorated sheet comprising: a transparent layer coating on the entire surface of a thermoplastic substrate sheet or at least in the areas of said substrate sheet having no coloring layer formed, said transparent layer coated by a transparent ink with as common varnish composition as the ink for coloring layer formation, and an adhesive layer formed as the outermost layer of said decorated sheet on the side provided with the colored layers of the substrate sheet. A molded article is fabricated by integrating the decorated sheet with a molding resin.
Abstract:
A semiconductor wafer includes a first semiconductor, and a second semiconductor formed directly or indirectly on the first semiconductor. The second semiconductor contains a first impurity atom exhibiting p-type or n-type conductivity, and a second impurity atom selected such that the Fermi level of the second semiconductor containing both the first and second impurity atoms is closer to the Fermi level of the second semiconductor containing neither the first impurity atom nor the second impurity atom, than the Fermi level of the second semiconductor containing the first impurity atom is. For example, the majority carrier of the second semiconductor is an electron, and the Fermi level of the second semiconductor containing the first and second impurity atoms is lower than the Fermi level of the second semiconductor containing the first impurity atom.
Abstract:
A semiconductor integrated circuit is provided which is capable of testing a high-speed memory at the actual operation speed of the memory, even when the operation speed of the built-in self-test circuit of the integrated circuit is restricted. In order to test a memory operating on a first clock, the integrated circuit is provided with a first test pattern generation section, operating on a second clock, for generating test data, and a second test pattern generation section, operating on a third clock, the inverted clock of the second clock, for generating test data. Furthermore, the integrated circuit is provided with a test data selection section for selectively outputting either the test data output from the first test pattern generation section or the test data output from the second test pattern generation section depending on the signal value of the second clock, thereby inputting the test data to the memory as test data. The frequency of the second clock is lower than, for example, one quarter or one half, the frequency of the first clock.