Techniques for out-of-domain (OOD) detection

    公开(公告)号:US12299402B2

    公开(公告)日:2025-05-13

    申请号:US18659606

    申请日:2024-05-09

    Abstract: The present disclosure relates to techniques for identifying out-of-domain utterances. One particular technique includes receiving an utterance and a target domain of a chatbot, generating a sentence embedding for the utterance, obtaining an embedding representation for each cluster of in-domain utterances associated with the target domain, predicting, using a metric learning model, a first probability that the utterance belongs to the target domain based on a similarity or difference between the sentence embedding and each embedding representation for each cluster, predicting, using an outlier detection model, a second probability that the utterance belongs to the target domain based on a determined distance or density deviation between the sentence embedding and embedding representations for neighboring clusters, evaluating the first probability and the second probability to determine a final probability, and classifying the utterance as in-domain or out-of-domain for the chatbot based on the final probability.

    DETECTING UNRELATED UTTERANCES IN A CHATBOT SYSTEM

    公开(公告)号:US20210083994A1

    公开(公告)日:2021-03-18

    申请号:US17017076

    申请日:2020-09-10

    Abstract: Techniques are described to determine whether an input utterance is unrelated to a set of skill bots associated with a master bot. In some embodiments, a system described herein includes a training system and a master bot. The training system trains a classifier of the master bot. The training includes accessing training utterances associated with the skill bots and generating training feature vectors from the training utterances. The training further includes generating multiple set representations of the training feature vectors, where each set representation corresponds to a subset of the training feature vectors, and configuring the classifier with the set representations. The master bot accesses an input utterance and generates an input feature vector. The master bot uses the classifier to compare the input feature vector to the multiple set representations so as to determine whether the input feature falls outside and, thus, cannot be handled by the skill bots.

Patent Agency Ranking