NAMED ENTITY DISAMBIGUATION USING ENTITY DISTANCE IN A KNOWLEDGE GRAPH

    公开(公告)号:US20200342055A1

    公开(公告)日:2020-10-29

    申请号:US16392386

    申请日:2019-04-23

    Abstract: Techniques are described herein for performing named entity disambiguation. According to an embodiment, a method includes receiving input text, extracting a first mention and a second mention from the input text, and selecting, from a knowledge graph, a plurality of first candidate vertices for the first mention and a plurality of second candidate vertices for the second mention. The present method also includes evaluating a score function that analyzes vertex embedding similarity between the plurality of first candidate vertices and the plurality of second candidate vertices. In response to evaluating and seeking to optimize the score function, the method performs selecting a first selected candidate vertex from the plurality of first candidate vertices and a second selected candidate vertex from the plurality of second candidate vertices. Further, the present method includes mapping a first entry from the knowledge graph to the first mention and mapping a second entry from the knowledge graph to the second mention. In this embodiment, the first entry corresponds to the first selected candidate vertex and the second entry corresponds to the second selected candidate.

    Named entity disambiguation using entity distance in a knowledge graph

    公开(公告)号:US11526673B2

    公开(公告)日:2022-12-13

    申请号:US17153078

    申请日:2021-01-20

    Abstract: According to an embodiment, a method includes converting a knowledge base into a graph. In this embodiment, the knowledge base contains a plurality of entities and specifies a plurality of relationships among the plurality of entities, and entities in the knowledge base correspond to vertices in the graph, and relationships between entities in the knowledge base correspond to edges between vertices in the graph. The method may also include extracting a plurality of vertex embeddings from the graph. An example vertex embedding of the plurality of vertex embeddings represents, for a particular vertex, a proximity of the particular vertex to other vertices of the graph. Further, the method may include performing, based at least in part on the plurality of vertex embeddings, entity linking between input text and the knowledge base.

    Automatic out-of-bound access prevention in GPU kernels executed in a managed environment

    公开(公告)号:US11288108B2

    公开(公告)日:2022-03-29

    申请号:US16701797

    申请日:2019-12-03

    Abstract: Techniques are provided for an automated method of adding out-of-bound access prevention in GPU kernels executed in a managed environment. In an embodiment, a system of computers compiles a GPU kernel code function that includes one or more array references that are memory address dependent. The system of computers compiles the kernel code function by generating a rewritten GPU kernel code module that includes, within the function signature of the rewritten GPU kernel code module, a respective array size parameter for each array reference of the one or more array references included in the GPU kernel code function. The system of computers further compiles the kernel code function by adding bounding protection instructions to the one or more potential out-of-bound access instructions in the rewritten GPU kernel code module. The potential out-of-bound access instructions comprise instructions that reference each respective array size parameter of the one or more array references. Afterwards, the rewritten GPU kernel code module is loaded in a virtual machine. Loading the rewritten GPU kernel code module in the virtual machine comprises modifying a host application to automatically transmit, from the host application, one or more input array size values. The one or more input array size values is referenced by the one or more potential out-of-bound-access instructions.

    NAMED ENTITY DISAMBIGUATION USING ENTITY DISTANCE IN A KNOWLEDGE GRAPH

    公开(公告)号:US20210142008A1

    公开(公告)日:2021-05-13

    申请号:US17153078

    申请日:2021-01-20

    Abstract: According to an embodiment, a method includes converting a knowledge base into a graph. In this embodiment, the knowledge base contains a plurality of entities and specifies a plurality of relationships among the plurality of entities, and entities in the knowledge base correspond to vertices in the graph, and relationships between entities in the knowledge base correspond to edges between vertices in the graph. The method may also include extracting a plurality of vertex embeddings from the graph. An example vertex embedding of the plurality of vertex embeddings represents, for a particular vertex, a proximity of the particular vertex to other vertices of the graph. Further, the method may include performing, based at least in part on the plurality of vertex embeddings, entity linking between input text and the knowledge base.

    Named entity disambiguation using entity distance in a knowledge graph

    公开(公告)号:US10902203B2

    公开(公告)日:2021-01-26

    申请号:US16392386

    申请日:2019-04-23

    Abstract: Techniques are described herein for performing named entity disambiguation. According to an embodiment, a method includes receiving input text, extracting a first mention and a second mention from the input text, and selecting, from a knowledge graph, a plurality of first candidate vertices for the first mention and a plurality of second candidate vertices for the second mention. The present method also includes evaluating a score function that analyzes vertex embedding similarity between the plurality of first candidate vertices and the plurality of second candidate vertices. In response to evaluating and seeking to optimize the score function, the method performs selecting a first selected candidate vertex from the plurality of first candidate vertices and a second selected candidate vertex from the plurality of second candidate vertices. Further, the present method includes mapping a first entry from the knowledge graph to the first mention and mapping a second entry from the knowledge graph to the second mention. In this embodiment, the first entry corresponds to the first selected candidate vertex and the second entry corresponds to the second selected candidate.

Patent Agency Ranking