Abstract:
Techniques are described for unifying static and dynamic compiler optimizations in source code bases. In an embodiment, a first compiler compiles source code of a target function to generate ahead-of-time (AOT) compiled machine code. A second compiler compiles the source code to generate an intermediate representation (IR) of the target function. In response to determining that the target function should be just-in-time (JIT) compiled, the AOT-compiled machine code for the target function is linked to the IR of the target function. During runtime, a physical processor executes AOT-compiled machine code of an executable program. When the target function is encountered for the first time, a JIT compiler is invoked. The JIT compiler generates JIT-compiled machine code for the target function. The physical processor executes the JIT-compiled machine code in place of the AOT-compiled machine code for the target function.
Abstract:
Techniques are described for unifying static and dynamic compiler optimizations in source code bases. In an embodiment, a first compiler compiles source code of a target function to generate ahead-of-time (AOT) compiled machine code. A second compiler compiles the source code to generate an intermediate representation (IR) of the target function. In response to determining that the target function should be just-in-time (JIT) compiled, the AOT-compiled machine code for the target function is linked to the IR of the target function. During runtime, a physical processor executes AOT-compiled machine code of an executable program. When the target function is encountered for the first time, a JIT compiler is invoked. The JIT compiler generates JIT-compiled machine code for the target function. The physical processor executes the JIT-compiled machine code in place of the AOT-compiled machine code for the target function.
Abstract:
A method for generating a binary executable of a program so that private symbols in a module are accessible from another module. In one embodiment, the method compiles a source program to an intermediate representation and scans the representation to find the private symbols in the program's modules. It then wraps a function around each private symbol. When called, the function returns an address of the private symbol, so that the other module can access the symbol from outside the module in which the symbol is found. At run time, a call is made to obtain the address of the function, which is then executed to obtain the address of the private symbol so that the symbol can be accessed. In another embodiment, a Just-In-Time compiler executes the wrapper functions and patches the executable program with the direct address of the private symbol to avoid a call to the wrapper function.
Abstract:
A method for generating a binary executable of a program so that private symbols in a module are accessible from another module. In one embodiment, the method compiles a source program to an intermediate representation and scans the representation to find the private symbols in the program's modules. It then wraps a function around each private symbol. When called, the function returns an address of the private symbol, so that the other module can access the symbol from outside the module in which the symbol is found. At run time, a call is made to obtain the address of the function, which is then executed to obtain the address of the private symbol so that the symbol can be accessed. In another embodiment, a Just-In-Time compiler executes the wrapper functions and patches the executable program with the direct address of the private symbol to avoid a call to the wrapper function.