Abstract:
The purpose of the present invention is to detect a fixed number of photons or greater in a short time and to create a super-resolution image having a desired resolution equal to optical resolution or higher. A microscope system includes: a scanner that scans laser light emitted from a continuous-wave light source on a specimen; a beam splitter that splits fluorescence from the specimen on which the laser light is scanned into a plurality of light paths with the same wavelength; a plurality of PMTs that respectively detect the fluorescence in the light paths split by the beam splitter and output light intensity signals; a PC that, each time the laser light is repeatedly scanned by the scanner, for each of the PMTs, acquires an image dataset of the specimen on the basis of the light intensity signals, that combines the plurality of image datasets for the same area of the specimen, which are acquired on the basis of the light intensity signals of the fluorescence from the same area of the specimen, detected by each PMT, and that subjects this final combined image dataset to computational processing for enhancing high-frequency components.
Abstract:
A desired observation timing is ensured, and simultaneity of observation among different observation positions is ensured. Provided is a microscope system including an electrically powered stage, a scanner, objective lenses, a revolver, an image-acquisition portion, an autofocus portion, a first storage portion that stores one of the focal positions of the low-magnification objective lens as a reference position, a focal-position setting portion that sets a focal position at which an image is acquired with reference to the reference position for the low-magnification objective lens, an acquisition-position setting portion that sets acquisition positions for partial images, and a map-image generating portion that generates a map image based on the partial images acquired at the set focal position, wherein the autofocus portion detects a focal position of the high-magnification objective lens at an observation position set on the map image with reference to the reference position for the low-magnification objective lens.
Abstract:
A fixed region at an outer periphery or an inner periphery of a sample that has a three-dimensional structure is selectively analyzed with accuracy. Provided is an observation system including a CPU that recognizes the 3D shape of an observation target, such as a spheroid, from a 3D image of cells, that sets a 3D mask of which the radial distance from a circumscribed surface of the recognized 3D shape is fixed over the entire region of the circumscribed surface and of which the shape is similar to the circumscribed surface, and that identifies a cell contained inside the set 3D mask.
Abstract:
Visual observation of morphological features of a cell group or individual cells acquired in 3D image data is facilitated, thus improving observation accuracy. Provided is an image processing device that generates, on the basis of a plurality of 2D images acquired by a microscope at different focus positions on a cell clump, 3D images of respective cells constituting the cell clump, that processes the generated 3D images and analyzes feature amounts on the basis of at least one measurement parameter, that displays analysis results in a graph, that allows a user to select a region of interest on the displayed graph, and that generates, from the 3D images that correspond to the plurality of cells that are included in the selected region of interest, 2D display images each in a plane with reference to an axis that is determined on the basis of a shape feature of the corresponding cell and displays the 2D display images in a list.
Abstract:
Provided is an observation system including: a monitor; a CPU that identifies, in a 3D image including the plurality of cells, the respective cells by assigning labels that differ from one another to the respective cells, that associates three mutually-intersecting cross-sectional images that constitute the 3D image, and that simultaneously displays the cross-sectional images on the monitor; and an input unit with which an operator specifies an arbitrary cell in any of the cross-sectional images displayed on the monitor. The CPU extracts, from the 3D image, the cross-sectional shapes, in the respective cross-sectional images, of the cell specified by using the input unit, on the basis of the labels, associates the extracted cross-sectional shapes of the cell with one another, and displays the extracted cross-sectional shapes in the respective cross-sectional images displayed on the monitor, in a distinguishable manner from the other cells.
Abstract:
A good super-resolution image can be generated, while eliminating a troublesome task necessary for generating a raw image. Provided is a sample observation apparatus including a memory, which stores a first number of photoelectrons required in a raw image for generating a super-resolution image, and a main controller, which calculates the number of image data sets to be added together for generating the raw image based on the first number of photoelectrons stored in the memory and a predetermined image acquisition condition, which acquires multiple sets of image data of the same region of a sample by repeatedly detecting light from the same region based on the calculated number of image data sets, and which generates the raw image by adding together the acquired multiple sets of image data of the same region.