Abstract:
An apparatus comprising means configured to: obtain at least one parameter value (106) associated with at least two time-frequency parts of at least one audio signal (104); obtain at least one similarity value based on the at least one parameter value (106) associated with the at least two time-frequency parts of at least one audio signal (104); determine at least one group of time-frequency parts from the at least two time-frequency parts of at least one audio signal (104), the at least one group of time-frequency parts based on the at least one similarity value; and generate for the at least one group of time-frequency parts at least one associated group parameter (204), the at least one group parameter (204) based on the at least one parameter value (106) associated with the time-frequency parts.
Abstract:
An apparatus comprising means configured to: obtain at least one direction parameter value for a time-frequency part of at least one audio signal (301); obtain at least one energy ratio for the time-frequency part (301), wherein each energy ratio is associated with a respective direction parameter value; generate respective at least one modified energy ratio from the at least one energy ratio for the time-frequency part (304); determine a quantization spatial resolution for encoding the at least one obtained direction parameter value based on the at least one modified energy ratio (305); and encode the obtained direction parameter values based on the quantization spatial resolution (306).
Abstract:
There is inter alia disclosed an apparatus for spatial audio encoding comprising: means for determining at least two of a type of spatial audio parameter for one or more audio signals, wherein a first of the type of spatial audio parameter is associated with a first group of samples in a domain of the one or more audio signals and a second of the type of spatial audio parameter is associated with a second group of samples in the domain of the one or more audio signals; and means for merging the first of the type of spatial audio parameter and the second of the type of spatial audio parameter into a merged spatial audio parameter.
Abstract:
An apparatus including at least one processor and at least one memory including computer code for one or more programs, the at least one memory and the computer code configured, with the at least one processor, to cause the apparatus at least to: generate content lock information for a content lock, wherein the content lock information enables control of audio signal processing associated with audio signals related to one or more audio sources based on a position and/or orientation input.
Abstract:
A method comprising: receiving lattice vector quantised parameter data, the parameter data representing at least one audio signal; determining within the data at least one bit error; and controlling the decoding of the data to generate an audio signal based on the determining of the bit error.
Abstract:
An apparatus comprising: a vector generator configured to generate a first vector of parameters defining at least one audio signal; a vector extender configured to extend the first vector of parameters to a second vector, where the first vector is length n and the second vector is length n, where m is greater than n; a vector transformer configured to transform the second vector, a lattice quantizer configured to lattice quantize the transformed second vector; and a reverse transformer configured to reverse transform the lattice quantized transformed second vector, such that the first n components of a reverse transformed lattice quantized transformed second vector are a lattice quantization of the first vector.
Abstract:
An apparatus comprising means for: obtaining a bitstream comprising encoded spatial metadata and encoded transport audio signals; decoding transport audio signals from the bitstream encoded transport audio signals; decoding spatial metadata from the bitstream encoded spatial metadata; generating an encoding metric; and generating spatial audio signals from the transport audio signals based on the encoding metric and the spatial metadata.
Abstract:
There is inter alia disclosed an apparatus for spatial audio encoding configured to convert two or more energy ratios associated with a time frequency tile of one or more audio signals to a further energy ratio parameter which is related to the two or more energy ratios; quantize the further energy ratio parameter using a first quantizer; determine a distribution factor of energy ratios dependent on a ratio of a first of the two or more energy ratios to the sum of the two or more energy ratios; select a further quantizer from a plurality of further quantizers using the quantized further energy ratio parameter; and quantize the distribution factor of energy ratios using the selected further quantizer.
Abstract:
An apparatus comprising means configured to obtain direction parameter values (108) associated with at least two time-frequency parts (202) of at least one audio signal (102); and encode the obtained direction parameter values based on a codebook (206), wherein the codebook comprises two or more quantization levels arranged such that a first quantization level comprises a first set of quantization values, and a second or succeeding quantization level comprises a second or further set of quantization values and preceding quantization level quantization values.
Abstract:
An apparatus comprising means configured to: generate spatial audio signal directional metadata parameters for a block of time-frequencies; generate encoded spatial audio signal directional metadata parameters (108) for a block of time-frequencies based on a first quantization resolution (203); compare a number of bits used for the encoded spatial audio signal directional parameters (108) for the block of time-frequencies based on the first quantization resolution against a determined number of bits; output or store the encoded spatial audio signal directional metadata parameters for a block of time-frequencies (108) based on a first quantization resolution when the number of bits used for the encoded spatial audio signal directional parameters for the block of time-frequencies (108) based on the first quantization resolution is less than a determined number of bits (217); generate encoded spatial audio signal directional metadata parameters (108) for the block of time-frequencies based on a second quantization resolution when the number of bits used for the encoded spatial audio signal directional parameters for the block of time-frequencies (108) based on the first quantization resolution is more than the determined number of bits and a difference between the determined number of bits and the number of bits used for the encoded spatial audio signal directional parameters (108) for the block of time-frequencies based on the first quantization resolution is less than a determined number of bits is within a determined threshold (217); generate encoded spatial audio signal directional metadata parameters (108) for the block of time-frequencies based on a third quantization resolution when the number of bits used for the encoded spatial audio signal directional parameters (108) for the block of time-frequencies based on the first quantization resolution is more than the determined number of bits and the difference between the determined number of bits and the number of bits used for the encoded spatial audio signal directional parameters (108) for the block of time-frequencies based on the first quantization resolution is greater than the determined threshold, wherein the third quantization resolution is determined such that a number of bits used for the encoded spatial audio signal directional parameters for the block of time-frequencies based on the third quantization resolution is always equal to or less than the determined number of bits (217).