摘要:
We describe a touch sensitive holographic image display device for holographically projecting a touch sensitive image at an acute angle onto a surface on which the device is placed. The device includes holographic image projection optics comprising at least one coherent light source illuminating a spatial light modulator (SLM), output optics to project a hologram onto an acute angle surface, and a remote touch sensing system to remotely detect a touch of a location within or adjacent to the holographically displayed image. A control system is configured to provide data defining an image for display, to receive detected touch data, and to control the device responsive to remote detection of a touch of a the displayed image.
摘要:
We describe a touch sensitive holographic image display device for holographically projecting a touch sensitive image at an acute angle onto a surface on which the device is placed. The device includes holographic image projection optics comprising at least one coherent light source illuminating a spatial light modulator (SLM), output optics to project a hologram onto an acute angle surface, and a remote touch sensing system to remotely detect a touch of a location within or adjacent to the holographically displayed image. A control system is configured to provide data defining an image for display, to receive detected touch data, and to control the device responsive to remote detection of a touch of a the displayed image.
摘要:
We describe a touch sensitive holographic image display device for holographically projecting a touch sensitive image at an acute angle onto a surface on which the device is placed. The device includes holographic image projection optics comprising at least one coherent light source illuminating a spatial light modulator (SLM), output optics to project a hologram onto an acute angle surface, and a remote touch sensing system to remotely detect a touch of a location within or adjacent to the holographically displayed image. A control system is configured to provide data defining an image for display, to receive detected touch data, and to control the device responsive to remote detection of a touch of a the displayed image.
摘要:
Display driver circuits are described for driving organic light emitting diode displays, particularly passive matrix displays, with greater efficiency. The display drivers comprise a controllable current generator to provide a variable current drive output to an OLED display, the current generator comprising at least one bipolar transistor in series with the current drive output. The display brightness is adjustable by controlling the current generator to vary the current drive to the display. Preferably the bipolar transistor has an emitter terminal substantially directly connected to a power supply line of the driver to reduce losses in the driver. A corresponding method is also described. By employing a bipolar transistor current drive and varying display brightness by controlling the current an efficient driver-display combination is obtained.
摘要:
Display driver circuitry for electro-optic displays, in particular active matrix displays using organic light emitting diodes. The circuitry includes a driver to drive an electro-optic display element in accordance with a drive voltage, a photosensitive device optically coupled to the electro-optic display element to pass a current dependent upon illumination reaching photosensitive device, a control circuit having a control line coupled to the driver to control the brightness of the electro-optic display element and having a current sense input coupled to the photosensitive device, a current set line for coupling to a reference current generator, and a display element select line to, when active, cause the control circuit to drive the electro-optic display element in accordance with the current set by the reference current generator. The circuit provides improved control of an electro-display element such as an organic LED pixel.
摘要:
Display driver circuits are described for driving organic light emitting diode displays, particularly passive matrix displays with greater efficiency. Display driver control circuitry (506) comprises a frame memory interface (505) for reading data from a frame memory (504) for presentation on a passive matrix OLED display. A blank line identifier (507) identifies one or more substantially blank rows of pixels defined by the data in the frame memory and the control circuitry (506) skips past these rows when the passive matrix display is addressed. When blank lines are skipped the apparent brightness of the remaining lines increases and thus preferably the control circuitry includes a power controller (505) for reducing a power supply to the display in proportion to the number of skipped lines. The invention is particularly suited to a display driver providing a controlled current drive.
摘要:
This invention generally relates to apparatus and methods for driving passive, electro-optic displays with greater efficiency. The invention is particularly suitable for driving passive matrix organic light emitting diode displays.
摘要:
This invention relates to methods, apparatus, and computer program code for driving an active matrix display, in particular an organic light emitting diode (OLED) display, with reduced power consumption.
摘要:
This invention relates to systems, methods and apparatus for driving organic light emitting diodes (OLED) displays, in particular those using multi-line addressing (MLA) techniques. Embodiments of the invention are particularly suitable for use with so-called passive matrix OLED displays. A current drive system for an electroluminescent display, the system comprising: a plurality of current mirrors having a plurality of outputs for driving a plurality of drive electrodes of said display, each said current mirror having a reference signal input; and an automatic selector coupled to said current mirror outputs to automatically select a said output for providing reference signal inputs to said current mirrors.
摘要:
Display driver circuitry for electro-optic displays, in particular active matrix displays using organic light emitting diodes. The circuitry includes a driver to drive an electro-optic element in accordance with a drive voltage, a photosensitive device optically coupled to the electro-optic display element to pass a current dependent upon illumination reaching the photosensitive device, a first control device coupled between the photosensitive device and a data line and responsive to a first control signal on a first control line to couple the photosensitive device to the data line, and a second control device coupled between the photosensitive device and the driver and responsive to a second control signal on a second control line to couple the photosensitive device to the driver. The circuit can be operated in a number of different modes and provides flexible control of an electro-display element such as an organic LED pixel.