Abstract:
A liquid crystal-containing composition includes a cholesteric liquid crystal, a polymer, and concave and convex portions located at the interface between a region including the cholesteric liquid crystal and a region including the polymer.
Abstract:
A liquid crystal-containing composition includes a cholesteric liquid crystal, a polymer, and concave and convex portions located at the interface between a region including the cholesteric liquid crystal and a region including the polymer.
Abstract:
The present invention provides a display medium which prevents a decrease in reflectance during storage at high temperatures, and a writing apparatus using the display medium. A photoconductive layer 24, a selective light transmission layer 22, and a liquid crystal layer 20 are laminated between substrates 12 and 14, which have electrodes 16 and 18, respectively, to form a display medium 10. The selective light transmission layer 22 as a color layer is composed of a deionized material. The ion concentration of the selective light transmission layer 22 is controlled to be within a predetermined range.
Abstract:
A liquid crystal-containing composition according to the present invention includes a cholesteric liquid crystal, a polymer, and particles having hydrophobic surfaces. The particles having hydrophobic surfaces are at the interface between the region containing the cholesteric liquid crystal and the region containing the polymer.
Abstract:
A liquid crystal-containing composition according to the present invention includes a cholesteric liquid crystal, a polymer, and particles having hydrophobic surfaces. The particles having hydrophobic surfaces are at the interface between the region containing the cholesteric liquid crystal and the region containing the polymer.
Abstract:
The present invention provides a display medium which prevents a decrease in reflectance during storage at high temperatures, and a writing apparatus using the display medium. A photoconductive layer 24, a selective light transmission layer 22, and a liquid crystal layer 20 are laminated between substrates 12 and 14, which have electrodes 16 and 18, respectively, to form a display medium 10. The selective light transmission layer 22 as a color layer is composed of a deionized material. The ion concentration of the selective light transmission layer 22 is controlled to be within a predetermined range.
Abstract:
A screen device of the present invention has a light collecting element array including a plurality of light collecting elements that collect incident light from a projector and a back surface sheet. The back surface sheet includes a first electrode plate, a second electrode plate, a photoconductive layer disposed between the first electrode plate and the second electrode plate, and an image recording layer disposed between the first electrode plate and the photoconductive layer. At the back surface sheet, a light reflecting portion is formed at a light collecting region to which the light collected by the light collecting elements is irradiated, and a light absorbing portion is formed at a non-light collecting region to which the light collected by the light collecting elements is not irradiated.
Abstract:
A liquid crystal-containing composition includes a microcapsule. In the microcapsule, a liquid crystal is encapsulated by a shell material component containing polyurea. Monomer components included in the polyurea include a polyisocyanate component, a high molecular weight polyamine component and a low molecular weight polyamine component.
Abstract:
A liquid crystal-containing composition includes a first cholesteric liquid crystal having a peak wavelength of selective reflection in the range of from 600 nm to 800 nm and encapsulated in a microcapsule and a second cholesteric liquid crystal having a peak wavelength of selective reflection in the range of from 400 nm to 500 nm as the only liquid crystals, and the content of the second cholesteric liquid crystal with respect to the entire cholesteric liquid crystal content is from about 5 weight % to about 40 weight %.
Abstract:
A display medium comprises: a pair of electrodes to which a voltage is applied; and a liquid crystal layer stack provided between the pair of electrodes. The liquid crystal layer stack contains a first liquid crystal layer having a first liquid crystal that undergoes transition into a specific alignment state in response to the voltage applied to the electrodes becoming equal to or greater than a first voltage value, and a second liquid crystal layer having a second liquid crystal that undergoes transition into the specific alignment state in response to the voltage becoming equal to or greater than a second voltage value. The second voltage value is greater than the first voltage value, and the second liquid crystal has a higher isotropic phase transition temperature than the first liquid crystal.