Abstract:
A method for force sensing using information from a display panel with a touch sensor and a fingerprint sensor is introduced. The method includes: obtaining, based on touch sensing data from a touch sensing circuit coupled to the touch sensor, first sensing information indicating capacitance value distribution over a touch sensing area due to pressing of an object on the display panel; obtaining, based on fingerprint sensing data from a fingerprint sensing circuit coupled to the fingerprint sensor, second sensing information indicating an effective pressing area due to the pressing of the object; and generating third sensing information indicating a force corresponding to the pressing of the object, based on the first sensing information and the second sensing information. An electronic module capable of facilitating force sensing and computing apparatus capable of force sensing are also provided.
Abstract:
A display method for a monitor is capable of dynamically adjusting a frame rate of a display panel in a monitor. The display method includes storing a display data outputted from a host to a memory unit, generating a control signal according to a frequency of storing the display data to the memory unit, adjusting the frame rate according to the control signal and a predefined adjustment value, and outputting the display data stored in the memory unit to the display panel according to the frame rate.
Abstract:
A data transmission method applied in a display, which includes a display panel, is provided. The data transmission method includes the following steps of: providing a host controller and n display drivers, n is a natural number greater than 1; providing a communication link under mobile industry processor interface (MIPI), connecting the host controller to the n display drivers; determining n virtual channel values Vc1-Vcn corresponding to the respective n display drivers; employing the host controller for providing a command with a virtual channel parameter through the communication link under MIPI; when the virtual channel parameter corresponds to an ith virtual channel values Vci, an ith display driver executing corresponding operations in response to the command, while the rest n−1 display drivers ignoring the command, wherein i is a natural number smaller than or equal to n.
Abstract:
A method of reading data for a display drive IC of a panel is provided. The method includes receiving a write format and at least one image packet, generating a synchronization signal according to the write format, and reading data of the at least one image packet according to the synchronization signal such that the panel uses a video mode to display the data of the at least one image packet.
Abstract:
A method of reading data for a display drive IC of a panel is provided. The method includes receiving a write format and at least one image packet, generating a synchronization signal according to the write format, and reading data of the at least one image packet according to the synchronization signal such that the panel uses a video mode to display the data of the at least one image packet.
Abstract:
A data transmission method applied in a display, which includes a display panel, is provided. The data transmission method includes the following steps of: providing a host controller and n display drivers, n is a natural number greater than 1; providing a communication link under mobile industry processor interface (MIPI), connecting the host controller to the n display drivers; determining n virtual channel values Vc1-Vcn corresponding to the respective n display drivers; employing the host controller for providing a command with a virtual channel parameter through the communication link under MIPI; when the virtual channel parameter corresponds to an ith virtual channel values Vci, an ith display driver executing corresponding operations in response to the command, while the rest n−1 display drivers ignoring the command, wherein i is a natural number smaller than or equal to n.
Abstract:
A layout method applied to a connector is provided. The connector is electrically connected between a flexible printed circuit (FPC) and a printed circuit board (PCB). The FPC includes M pairs of differential lines and X shield lines. The PCB includes M pairs of differential lines and Z shield lines. The layout method includes following steps. Firstly, M pairs of conductive lines are disposed on the connector. The M conductive lines are correspondingly electrically connected to the M differential lines of the FPC and the M differential lines of the PCB. Then; Y conductive lines are disposed on the connector, wherein Y is smaller than X. Furthermore, at least one of the Y conductive lines is electrically connected to at least one of the X shield lines and at least one of the Z shield lines.
Abstract:
A method for force sensing using information from a display panel with a touch sensor and a fingerprint sensor is introduced. The method includes: obtaining, based on touch sensing data from a touch sensing circuit coupled to the touch sensor, first sensing information indicating capacitance value distribution over a touch sensing area due to pressing of an object on the display panel; obtaining, based on fingerprint sensing data from a fingerprint sensing circuit coupled to the fingerprint sensor, second sensing information indicating an effective pressing area due to the pressing of the object; and generating third sensing information indicating a force corresponding to the pressing of the object, based on the first sensing information and the second sensing information. An electronic module capable of facilitating force sensing and computing apparatus capable of force sensing are also provided.
Abstract:
The present invention provides a control method for a touch and organic light-emitting diode (OLED) driver, for controlling an OLED touch panel. The OLED touch panel has a dark screen mode and a normal display mode, and includes a cathode layer of OLEDs. The control method includes a plurality of steps, and the steps include applying a first load-free driving (LFD) signal to the cathode layer or controlling the cathode layer to be floating during a touch sensing period in the dark screen mode; and applying a constant voltage to the cathode layer in the normal display mode.
Abstract:
An in-cell touch control panel includes a liquid crystal layer; a top glass; a bottom glass; a plurality of driving electrodes, formed between the top glass and the liquid crystal layer; and a plurality of sensing electrodes, formed between the bottom glass and the liquid crystal layer, and perpendicular to the plurality of driving electrodes. The plurality of driving electrodes and the plurality of sensing electrodes are utilized for sensing a touch point on the in-cell touch control panel.