Abstract:
Adjustment of an optica! component of a device comprises determining of at least one derivative of coupling efficiency of the optical component as a function of parameters used for control of a steering function of the optica! component. At least one oscillating component is induced into the parameters for the determining. The adjustment of the optical component is based on the determined at least one derivative.
Abstract:
A system comprising: at least one sensor and at least one control apparatus wherein; the sensor comprises: at least one processor; and at least one memory including computer program code;the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform;compressing a sensor data signal using a sampling basis to obtain a compressed data signal; and in response to a first feedback signal changing a sampling basis used to obtain the compressed data signal; and wherein the control apparatus comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to perform; receiving the data signal from the at least one sensor;determining a quality of the received data signal; and if the quality of the received data signal is within a first threshold providing a feedback signal to control the sampling basis of the sensor.
Abstract:
Methods and apparatuses for communication between a mobile device and a target device are disclosed. Information of a target device is determined by means of at least one element of a mobile device for providing an optical link with the target device. An optical component of the mobile device is then aligned with an optical component of the target device based on said information determined by the mobile device. The target device can obtain information of relative positioning of the target device and the mobile device determined for the purposes of providing an optical link between the target device and the mobile device and the optical component thereof can be aligned with the optical component of the mobile device based on the information.
Abstract:
An approach is provided for adiabatic quantum annealing (computing, AQC). There is disclosed an apparatus comprising a first quantum dot and a second quantum dot forming a first kind of double quantum dot; and a third quantum dot and a fourth quantum dot forming a second kind of double quantum dot. The apparatus also comprises a first control element for adjusting a capacitance of a capacitive element; a second control element for supplying a control voltage to the first kind of double quantum dot; a metallic or superconducting contact to capacitively couple the first kind of double quantum dot to the fourth quantum dot; and an electric charge sensor for providing an indication of the state of the first kind of double quantum dot. The present invention also relates to a method for controlling the apparatus.
Abstract:
Methods and apparatus for use in quantum cryptographic applications are disclosed. An optical signal having a first wavelength is encoded for quantum cryptography at a stage where the optical signal is on at least two signal paths. The wavelength of the encoded optical signal on the at least two signal paths is converted to a second wavelength before the optical signal is encoded for transmission. Encoding for transmission is applied to the optical signal on the second wavelength.
Abstract:
An approach is provided for adiabatic quantum annealing (computing, AQC). There is disclosed a method for finding a solution by using adiabatic quantum annealing. In an embodiment of the method an initial state to an adiabatic quantum computing element is provided and an adiabatic quantum annealing is performed by the adiabatic quantum computing element. The result of the adiabatic quantum annealing is examined to determine whether one or more terminating criteria have been met. If the examining reveals that one or more terminating criteria have been met, returning a candidate solution with the lowest energy. If the examining reveals that one or more terminating criteria have not been met, the method further comprises adjusting the state of the adiabatic quantum computing element; and repeating the adiabatic quantum annealing. The present invention also relates to apparatuses and computer program products for implementing the method and circuitry relating to the adiabatic quantum annealing.
Abstract:
According to an example aspect of the present invention, there is provided an apparatus comprising at least one processing core, at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processing core, cause the apparatus at least to obtain a document, segmented into a first number of segments (510), obtain the first number of outputs of a cryptographic operation, such that for each output, a random value and a document segment are employed to generate an input to the cryptographic operation (520), build a Merkle tree based on the outputs of the cryptographic operation (530), and store a top hash of the Merkle tree in a block chain (540).
Abstract:
A data processing system is disclosed for machine learning. The system comprises a sampling module (13) and a computational module (15) interconnected by a data communications link (17). The computational module is configured to store a parameter vector representing an energy function of a network having a plurality of visible units connected using links to a plurality of hidden units, each link being a relationship between two units. The sampling module is configured to receive the parameter vector from the first processing module and to sample from the probability distribution defined by the parameter vector to produce state vectors for the network. The computational module is further configured to receive the state vectors from the second processing module and to apply an algorithm to produce new data. The sampling and computational modules are configured to operate independently from one another.
Abstract:
In accordance with an example embodiment of the present invention, there is provided an apparatus comprising a dual-rail encoder (120) configured to receive light from a light source and to output dual-rail encoded light, a combiner (130) configured to convert the dual-rail encoded light into polarization encoded light, and at least one processing core configured to obtain compensation adjustment information concerning a fibre (145) and to control the dual-rail encoder (120) based at least in part on the compensation adjustment information.
Abstract:
Apparatuses and methods for producing and/or receiving an optical beam are disclosed, A phased array on a chip comprises phase shifters and off-chip couplers to provide phase controlled pixels. An optical system is arranged in front of the phased array. The optical system is configured to concentrate light from the phased array and/or expand a received beam of light for input into the phased array.