Abstract:
Provided is a pressure-sensitive adhesive sheet for optical use which less suffers from a misoperation-causing change in capacitance upon application to an optical member.The pressure-sensitive adhesive sheet for optical use includes a pressure-sensitive adhesive layer and has a dielectric constant of from 2 to 8 at a frequency of 1 MHz and a dielectric loss tangent of more than 0 and 0.2 or less at a frequency of 1 MHz. The pressure-sensitive adhesive sheet for optical use preferably has a dielectric constant at a frequency of 1.0×106 Hz being 60% or more of that at a frequency of 1.0×104 Hz. In addition, the pressure-sensitive adhesive sheet for optical use preferably has an absolute value of difference between the dielectric loss tangent at a frequency of 1.0×106 Hz and that at a frequency of 1.0×104 Hz of 0.15 or less.
Abstract:
Provided is a resin including a copolymer having a first structural unit and/or second structural unit and a structural unit having a polar group. R1, R2, R5, and R6 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R3 and R4 are each independently a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, A1 is a saturated carbon chain having 3 to 7 carbon atoms or a structure resulting from substitution of a heteroatom for a part of the carbon atoms of the saturated carbon chain, m and n are each independently 0 or 1, and X1 and X2 are each independently a halide ion, a hydroxide ion, or an anion of an organic or inorganic acid.
Abstract:
A method of the present invention for producing an anion exchange membrane includes the steps of: (i) irradiating a first polymer film with radiation; and (ii) graft-polymerizing a monomer containing a site into which a functional group having anion conducting ability can be introduced and an unsaturated carbon-carbon bond onto the radiation-irradiated first polymer film so as to form a second polymer film containing grafted chains. This method further includes the subsequent steps of: (a) subjecting the second polymer film to a treatment including irradiation with radiation so as to introduce a crosslinked structure into the grafted chains; and (b) introducing the functional group having anion conducting ability into the site.
Abstract:
Provided is an ionomer resin including a copolymer containing the following first structural unit. L1 to L5 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkanol group having 1 to 4 carbon atoms, or a specific functional group including an anion-exchange group, and an example of the functional group is —Z2-M1-Z1(R1)(R2)(R3). R1 to R3 are directly bonded to Z1 and are each independently an alkyl group having 1 to 8 carbon atoms or an alkanol group having 1 to 8 carbon atoms. M1 is a linear hydrocarbon chain having 3 to 8 carbon atoms, Z1 is a nitrogen atom or a phosphorus atom, and Z2 is a nitrogen atom bonded to one hydrogen atom, an oxygen atom, or a sulfur atom. L6 is a hydrogen atom, a methyl group, or an ethyl group.
Abstract:
Disclosed is an anion exchange electrolyte membrane including: a base polymer having a polar group; and a graft chain having a specific structural unit. The graft chain is, for example, a polymer chain that is formed from diallyldimethylammonium chloride as a monomer.
Abstract:
Disclosed is a production method including the steps of: graft-polymerizing a first monomer onto a polymer substrate so as to form a first graft polymer; and graft-polymerizing a second monomer onto the first graft polymer so as to form a second graft polymer. The first monomer contains a polar group. The second monomer contains at least one selected from the group consisting of an ion-conducting group and a site into which an ion-conducting group can be introduced. The second monomer has a higher polarity than the first monomer.