Abstract:
Provided is a low-dielectric porous polymer film having a low dielectric constant at high millimeter-wave frequencies and thereby useful as a sheet for a millimeter-wave antenna. The low-dielectric porous polymer film comprises: a base material layer made of a polymer material and formed with fine pores dispersed therein; and a substantially smooth skin layer made of the same polymer material as that of the base material layer and formed on at least one of the surfaces of the base material layer.
Abstract:
Provided is a porous low-dielectric polymer film which has a low dielectric constant at high millimeter-wave frequencies to fulfill utility as a sheet for a millimeter-wave antenna, and provides excellent circuit board processability. The porous low-dielectric polymer film is made of a polymer material and formed with fine pores dispersed therein, wherein the film has a porosity of 60% or more, and the pores have an average pore diameter of 50 μm or less, and wherein a porous structure of the film is a closed-cell structure.
Abstract:
Provided is a low-dielectric porous polymer film having a low dielectric constant at high millimeter-wave frequencies and thereby useful as a sheet for a millimeter-wave antenna. The low-dielectric porous polymer film is made of a polymer material and formed with fine pores dispersed therein, wherein the film has a porosity of 60% or more, and the pores have an average pore diameter of 10 μm or less.
Abstract:
The present invention provides a linker for solid phase synthesis of nucleic acid, which consists of a compound represented by the formula (I) or the formula (II), a support for solid phase synthesis of nucleic acid, which has a structure represented by the formula (III), and a production method of a nucleic acid, which uses the support: wherein each symbol is as defined in the SPECIFICATION.
Abstract:
A resin sheet includes a porous structure. The porous structure is configured to adjust transmission of a millimeter wave. The porous structure has a relative permittivity varying in stages in a thickness direction of the resin sheet from a plane on which the millimeter wave is incident, the relative permittivity varying such that a difference between average relative permittivities in two adjacent layer portions is a predetermined value or less, the layer portions each having a particular thickness smaller than a wavelength of the millimeter wave. The porous structure has, as pores, only pores each having a pore diameter equal to or less than 10% of the wavelength of the millimeter wave.
Abstract:
A resin sheet includes the porous structure. The porous structure is configured to adjust transmission of a millimeter wave. The porous structure has a relative permittivity varying in a thickness direction of the resin sheet such that a difference between average relative permittivities in two adjacent layer portions is a predetermined value or less, the layer portions each having a particular thickness smaller than a wavelength of the millimeter wave. The porous structure includes a boundary portion being one of the layer portions, the boundary portion having a maximum average relative permittivity. The relative permittivity increases in stages from end portions of the porous structure toward the boundary portion, the end portions being defined in the thickness direction of the resin sheet.